CSE 203B Convex Optimization

Discussion: Convex functions
Table of Contents:

1) Convex functions
 a) Definition
 b) First-order Condition
 c) Second-order condition
 d) Operations that preserve Convexity

2) Conjugate Function
 a) Definition
 b) Supporting Hyperplane
 c) Solving Conjugate Problems

3) Quasi concave and Quasiconvex Functions

4) Assignment Hints
Convex Functions:

- A function $f: \mathbb{R}^n \rightarrow \mathbb{R}$ is convex if $\text{dom } f$ is a convex set and if for all $x, y \in \text{dom } f$, and $0 \leq \theta \leq 1$, we have:
 \[
f(\theta x + (1-\theta)y) \leq \theta f(x) + (1-\theta)f(y)\]

- Concave Functions: $-f$ is Convex
First Order Condition

- Suppose f is differentiable (\(\text{dom } f\) is open and \(\nabla f\) exists at each point in \(\text{dom } f\)).
- Function f is convex iff \(\text{dom } f\) is convex and for all $x, y \in \text{dom } f$

\[
f(y) \geq f(x) + \nabla f(x)^T (y - x)
\]
Second Order Conditions

- Suppose f is twice differentiable ($\text{dom } f$ is open and its Hessian exists at each point in $\text{dom } f$), then f is convex iff $\text{dom } f$ is convex and for all $x, y \in \text{dom } f$.

\[\nabla^2 f(x) \succeq 0 \] (the Hessian is positive semidefinite)

\[x^T \nabla^2 f(x) x \geq 0 \quad x \in \mathbb{R}^n \]
Operations that preserve convexity

- Verify by Using definition of convex functions (Proof of \(f(x) = \max_i x_i \))
- For twice differentiable functions, show \(\nabla^2 f(x) \succeq 0 \) (PSD Hessian)
- Show that \(f \) is obtained from simple convex functions by operations that preserve convexity (Ref. Chap. 3.2)
 - Non-negative weighted sum
 - Composition with affine function
 - Pointwise maximum or supremum
 - Composition
 - Partial Minimization
Conjugate Functions

- For a function $f : \mathbb{R}^n \rightarrow \mathbb{R}$ (that is not necessarily convex), the conjugate $f^* : \mathbb{R}^n \rightarrow \mathbb{R}$ is defined as follows:

$$f^*(y) = \sup \{ y^T x - f(x) \mid x \in \text{dom } f \}$$

- $f^*(y)$ is convex even if $f(x)$ is not convex.
- Proof: Use pointwise supremum (maximum)
- $y^T x - f(x)$ is affine function in y. Therefore pointwise supremum of convex function leads to a convex function.
Supporting hyperplane: if f is convex in that domain

$(x, f(x))$ where $\nabla f^T(x) = y$ if f is differentiable

$$\sup \left\{ y^T x - f(x) \right\}$$

$$y = \nabla f(x)$$

Figure 3.8 A function $f : \mathbb{R} \rightarrow \mathbb{R}$, and a value $y \in \mathbb{R}$. The conjugate function $f^*(y)$ is the maximum gap between the linear function yx and $f(x)$, as shown by the dashed line in the figure. If f is differentiable, this occurs at a point x where $f'(x) = y$.
Examples of Conjugates

- Derive the conjugates of $f : R \rightarrow R$

Affine

- $f(x) = ax - \beta$
 - $f^*(y) = \begin{cases} \beta & \text{if } y = \alpha \\ \infty & \text{if } y \neq \alpha \end{cases}$

Norm

- $f(x) = |x|$
 - $f^*(y) = \begin{cases} 0 & \text{if } |y| \leq 1 \\ \infty & \text{if } |y| > 1 \end{cases}$
Solving Conjugate Function Problems

Let \(f^*(y) = \sup_x g(x, y) = \sup_x (y^T x - f(x)) \). At a given point \(\bar{y} \), the conjugate could be one of the following three cases:

1. **Finite**: \(g(x, \bar{y}) \in \mathbb{R} \) (the good scenario).
2. **Infeasible**: \(g(x, \bar{y}) \to +\infty \) for at least one choice of \(x \). For example in conjugate of L1 norm the solution is infeasible for \(|y| > 1 \).

 Intuition: If I can keep making \(g(x, \bar{y}) \) larger and larger somehow, then all finite values that \(g(x, \bar{y}) \) can take will eventually pale in comparison.
Solving Conjugate Problems

- **Unbounded Below**: \(g(x, y) \to -\infty \) for all \(x \) values. For all sets of \(x(t) \) values; as \(t \to \infty \), \(g(x, y) \to -\infty \) (This is rare.) Intuition: If there existed any finite solutions anywhere, it would have been preferable to \(-\infty\).

Note: Different conditions may arise for different ranges of \(y \) values. To determine complete set of solutions we need to consider different values of \(y \) separately where the solution is Finite/Infeasible/Unbounded below.
Solving Conjugate Problems: (Solve in Class)

Example: \(f(x) = a^T x + b \), \(f^*(y) = ? \)

\[
\begin{align*}
f^*(y) &= \sup_{x} (y^2 - a^T x - b) \\
&= \sup_{x} (y-a)x - b)
\end{align*}
\]

Case I, \(y > a \)

\[
\sup_{x} ((y-a)x - b) \to \infty \quad \text{for} \quad x \to \infty
\]
Continued..

Case 2, \(y < a \)

\[
\sup_{x \in \mathbb{R}} (y - a) = -b \rightarrow -\infty \quad \text{for } x \rightarrow -\infty
\]

Case 3, \(y = a \)

\[
\sup_{x \in \mathbb{R}} (-b) = -b
\]
Example 2:

Example (2020 CSE203B QII.3):

\[f(x) = \begin{cases}
\frac{1}{2}x^2 & |x| < 1 \\
|x| - \frac{1}{2} & |x| > 1
\end{cases}, \quad f^*(y) = ? \]

[Graph or image of the function f(x) with regions and inequalities]
\[
\begin{align*}
\mathcal{P}(z) &= \sup_{x \in \mathbb{R}} \left\{ yx - f(x) \right\} \\
&= \begin{cases}
 yx + x + \frac{1}{2} & \text{if } z \leq -1 \\
 yx - \frac{1}{2} x^2 & \text{if } -1 < z < 1 \\
 yx - x + \frac{1}{2} & \text{if } z \geq 1
\end{cases}
\end{align*}
\]

2) For \(z < -1 \) or \(z > 1 \), \(\mathcal{P}(z) \to \infty \)

2) For \(-1 < z < 1 \)

1) \(\frac{\partial}{\partial x} \left(y + 1 \right) x^{\frac{1}{2}} = y + 1 > 0 \)

max value is for \(z = -1 \) or \(z = -\frac{1}{2} \)
2. \[\frac{d}{dx} (y\frac{e}{2} - \frac{1}{2} x^2) = y - e \Rightarrow y = e \]

3. \[\frac{d}{dx} (y - 1) + \frac{1}{2} = y + \leq 0 \]

Max value is for \(x = 1 \)

\[\Rightarrow y = \frac{1}{2} \]

\[f(y) = \frac{1}{2} y^2 \]
Example 3:

\[f(x) = \begin{cases}
\|x\|_2^2, & \|x\|_2 \leq a, \\
\frac{a}{2}\|x\|_2 - a, & \|x\|_2 > a,
\end{cases} \]

Similar to HW 0.3
Assignment Hints

1. Use convexity preserving properties to prove/disprove convexity.
2. Apply second derivative to prove or disprove convexity.
3. Show rough sketch of approximation by trying different values of X_i. What happens when one of the values is 0 and rest are x_{max}?
4. Look for some other methods to approximate the function.
5. $\max(x^Ty) = \max(\frac{x^Ty}{\|y\|_p})$
6. Try to solve $\nabla_y \max(\frac{x^Ty}{\|y\|_p}) = 0$
Assignment Hints

- For Conjugate functions check the feasible regions for the solution to exist.
- Check what happens when ‘x’ lies in null space and range of A.
- Take the derivative of conjugate.
- L_p $0<p<1$, try reading https://kconrad.math.uconn.edu/blurbs/analysis/lpspace.pdf

\[\text{Dual norm is projection on vector } x \text{, find the maximum projection.} \]
Quasiconvex and Quasiconcave functions

- A function $f: \mathbb{R}^n \rightarrow \mathbb{R}$ is quasi-convex if its domain and all its sublevel sets:
 \[S_\alpha = \{ x \in \text{dom } f \mid f(x) \leq \alpha \}, \alpha \in \mathbb{R} \]
 are convex.

- A function $f: \mathbb{R}^n \rightarrow \mathbb{R}$ is quasi-concave if all its super level sets:
 \[S_\alpha = \{ x \in \text{dom } f \mid f(x) \geq \alpha \}, \alpha \in \mathbb{R} \]

- A function that is both quasiconvex and quasiconcave is said to be quasilinear.
Examples:

1) A quasiconvex function that is not convex

2) Not quasiconvex
Quasiconvex and Quasiconcave Functions:

A function f is quasiconvex if and only if $\text{dom}(f)$ is convex and for any $x, y \in \text{dom}(f)$ and $0 \leq \theta \leq 1$,

$$f(\theta x + (1-\theta) y) \leq \max\{f(x), f(y)\},$$

Figure 3.10 A quasiconvex function on \mathbb{R}. The value of f between x and y is no more than $\max\{f(x), f(y)\}$.