In this homework, we work on the basic concepts of convex optimization and linear algebra.
All the problems are graded by completion.

1. Convex Optimization (10 pts)
1.1. Given a function \(f_0(x) = x^4 - 5x^3 + 4x^2 - 3x + 1 \), where \(x \in \mathbb{R} \). Solve \(\min_x f_0(x) \) using Kuhn-Tucker conditions. Show your derivation. (2 pts)

Solution. The following two KT conditions:
\[
\begin{align*}
\nabla^2 f_0(x) &\geq 0 \\
\nabla f_0(x^*) &= 0
\end{align*}
\]

First, we have that \(\nabla^2 f_0(x) = 12x^2 - 30x + 8 \), which implies \(f_0(x) \) is not necessarily convex. By solving \(\nabla f_0(x^*) = 0 \), we get that \(\nabla f_0(x^*) = 4x^3 - 15x^2 + 8x - 3 = 0 \), and it’s real roots are \(x^* \approx 3.1979 \).

1.2. Given two functions \(f_0(x) = x^2 - 5x + 2 \), and \(f_1(x) = 2x + 1 \), where \(x \in \mathbb{R} \). Solve \(\min_x f_0(x) \) subject to \(f_1(x) \leq 0 \). (8 pts)

Solution. The Lagrangian is \(L(x, \lambda) = f_0(x) + \lambda f_1(x) = x^2 - 5x + 2 + \lambda(2x + 1) \), where \(\lambda \) is a Lagrange multiplier, \(\lambda \geq 0 \in \mathbb{R} \). The primal problem is \(\min_x \max_\lambda L(x, \lambda) \) and the dual problem is \(\max_\lambda \min_x L(x, \lambda) = \max_\lambda g(\lambda) \). To solve the dual problem, we first solve \(\min_x L(x, \lambda) \) using the KT conditions:
\[
\begin{align*}
\frac{\partial^2 L(x, \lambda)}{\partial x^2} &= 2 \geq 0 \\
\frac{\partial L(x, \lambda)}{\partial x} &= 2x - 5 + 2\lambda
\end{align*}
\]

By setting \(\frac{\partial L(x, \lambda)}{\partial x} = 0 \), we get that \(x = (5 - 2\lambda)/2 \) is the global minimum of \(L(x, \lambda) \). Plugging this into \(g(\lambda) \) yields \(g(\lambda) = -\lambda^2 + 6\lambda - 17/4 \).

Then, we solve \(\max_\lambda g(\lambda) \)—again using the KT conditions:
\[
\begin{align*}
\frac{\partial^2 g(\lambda)}{\partial \lambda^2} &= -2 \leq 0 \\
\frac{\partial g(\lambda)}{\partial \lambda} &= 6 - 2\lambda
\end{align*}
\]

\(\frac{\partial g(\lambda)}{\partial \lambda} = 6 - 2\lambda = 0 \) implies \(\lambda = 3 \). Plugging back into \(x(\lambda) \) yields \(x^* = -1/2 \) and \(f(x^*) = 19/4 \).

2. Matrix Properties (16 pts)
2.1. Linear System:

\[
\begin{align*}
\end{align*}
\]
Consider the following system of linear equations

\[
\begin{align*}
 x_1 + x_2 + x_3 &= 1 \\
 x_1 - 2x_3 &= -2 \\
 x_2 + 3x_3 &= -1.
\end{align*}
\]

Write the equations in a matrix form. (2 pts)

Solution.

\[
Ax = b
\]

\[
\begin{bmatrix} 1 & 1 & 1 \\
1 & 0 & -2 \\
1 & 3 & 0 \end{bmatrix}
\begin{bmatrix} x_1 \\
x_2 \\
x_3 \end{bmatrix} =
\begin{bmatrix} 1 \\
-2 \\
-1 \end{bmatrix}
\] (7)

2.2. For the matrix in problem 2.1, derive its range. What’s the rank of this matrix? (2pts)

Solution. Perform Gaussian Elimination on \(A \) & reduce to row-echelon form. The range is the span of the associated pivots and rank\((A) = 3 \).

2.3. Derive the nullspace of the matrix in problem 2.1. What’s the relation between the range and nullspace of a matrix? (2pts)

Solution. The nullspace of \(A \) consists of all solutions \(x \) to the system \(Ax = 0 \). In general, for an \(m \times n \) matrix \(A \), the dimensions of \(R(A) \) and \(N(A) \) sum to \(n \).

2.4. Derive the trace and determinant of the matrix in problem 2.1. Write the eigenvalues and eigenvectors. (3pts)

2.5. Prove the following properties. (3 pts)

- For \(A \in \mathbb{R}^{m \times n}, B \in \mathbb{R}^{n \times m} \), \(\text{tr}AB = \text{tr}BA \).
- For \(A, B \in \mathbb{R}^{n \times n} \), \(\det AB = \det A \det B \).
- For \(A \in \mathbb{R}^{n \times n} \), \(\det A = \prod_{i=1}^{n} \lambda_i \), and \(\text{tr}A = \sum_{i=1}^{n} \lambda_i \), where \(\lambda_i, i = 1, \ldots, n \) are the eigenvalues of \(A \).

Solution.

Commutativity of Trace

\[
\text{trace}(AB) = \sum_{i=1}^{m} (AB)_{ii} = \sum_{i=1}^{m} \sum_{j=1}^{n} A_{ij} B_{ji}
\]

\[
= \sum_{j=1}^{n} \sum_{i=1}^{m} B_{ji} A_{ij} = \sum_{j=1}^{n} (BA)_{jj} = \text{trace}(BA)
\]

Distributivity of Determinant

2
If \(A \) is not invertible, then \(AB \) is not invertible, we have \(\det(AB) = \det(A)\det(B) = 0 \). If \(A \) is invertible, \(A \) can be row reduced to an identity matrix \(I \) by a finite number of elementary row operations \(E_1, E_2, \ldots, E_n \), i.e.

\[
A = E_n E_{n-1} \ldots E_1 I
\]

Multiplying the LHS and RHS by \(B \), we have

\[
AB = E_n E_{n-1} \ldots E_1 B
\]

Taking the determinant of LHS and RHS, we have

\[
\det(A) = \det(E_n) \det(E_{n-1}) \ldots \det(E_1) \det(B)
\]

If \(E \) is an elementary row operation, we have \(\det(EA) = \det(E)\det(A) \) (verify yourself). So,

\[
\det(E_n E_{n-1} \ldots E_1 B) = \det(E_n) \ldots \det(E_1) \det(B)
\]

\[
= \det(A)\det(B)
\]

Determinants & Eigenvalues

Method 1. Let \(\lambda_1, \lambda_2, \ldots, \lambda_n \) be eigenvalues of \(A \). By definition, \(\lambda_1, \lambda_2, \ldots, \lambda_n \) are the roots of the characteristic polynomial of \(A \).

\[
p_A(t) = \det(A - tI) = (\lambda_1 - t)(\lambda_2 - t) \ldots (\lambda_n - t)
\]

Then, for \(t = 0 \) we have:

\[
p_A(0) = \det(A) = \lambda_1 \lambda_2 \ldots \lambda_n = \prod_{i=1}^{n} \lambda_i
\]

Method 2. Any matrix \(A \in \mathbb{R}^{n \times n} \) can be transformed to Jordan canonical form \(J \) by a similarity transformation \(T \):

\[
J = T^{-1}AT
\]

Where \(J \) is upper-triangular with diagonal corresponding to the eigenvalues of \(A \) \(\lambda_1, \ldots, \lambda_n \). Correspondingly, \(\text{tr}(J) = \sum_{i=1}^{n} \lambda_i \). Note that \(\text{tr}(AB) = \text{tr}(BA) \). Then by some algebra:

\[
\text{tr}(J) = \text{tr}(T^{-1}AT) = \text{tr}(T^{-1}(AT)) = \text{tr}((AT)T^{-1}) = \text{tr}(ATT^{-1}) = \text{tr}(AI) = \text{tr}(A)
\]

2.6. Suppose that you are a tutor. Devise a simple but meaningful numerical example to illustrate the three equations in problem 2.5. (4 pts)

3. Matrix Operations (22 pts)

Gradient: consider a function \(f : \mathbb{R}^n \to \mathbb{R} \) that takes a vector \(x \in \mathbb{R}^n \) and returns a real value. Then the gradient of \(f \) (w.r.t. \(x \)) is the vector of partial derivatives, defined as

\[
\nabla_x f(x) = \begin{bmatrix}
\frac{\partial f(x)}{\partial x_1} \\
\frac{\partial f(x)}{\partial x_2} \\
\vdots \\
\frac{\partial f(x)}{\partial x_n}
\end{bmatrix}
\]
Hessian: consider a function \(f : \mathbb{R}^n \to \mathbb{R} \) that takes a vector \(x \in \mathbb{R}^n \) and returns a real value. Then the Hessian matrix of \(f \) (w.r.t. \(x \)) is the \(n \times n \) matrix of partial derivatives, defined as

\[
\nabla_x^2 f(x) = \begin{bmatrix}
\frac{\partial^2 f(x)}{\partial x_1^2} & \frac{\partial^2 f(x)}{\partial x_1 \partial x_2} & \cdots & \frac{\partial^2 f(x)}{\partial x_1 \partial x_n} \\
\frac{\partial^2 f(x)}{\partial x_1 \partial x_2} & \frac{\partial^2 f(x)}{\partial x_2^2} & \cdots & \frac{\partial^2 f(x)}{\partial x_2 \partial x_n} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial^2 f(x)}{\partial x_n \partial x_1} & \frac{\partial^2 f(x)}{\partial x_n \partial x_2} & \cdots & \frac{\partial^2 f(x)}{\partial x_n^2}
\end{bmatrix}.
\]

3.1. Write the gradient and Hessian matrix for the linear function

\[f(x) = 2b^T x, \]

where \(x \in \mathbb{R}^n \) and vector \(b \in \mathbb{R}^n \). (2 pts)

Solution.

\[f(x) = 2b^T x = \sum_{i=1}^{n} 2b_i x_i \]

Gradient:

\[
\nabla_x f(x) = \begin{bmatrix}
\frac{\partial f(x)}{\partial x_1} \\
\frac{\partial f(x)}{\partial x_2} \\
\vdots \\
\frac{\partial f(x)}{\partial x_n}
\end{bmatrix} = \begin{bmatrix} 2b_1 \\ 2b_2 \\ \vdots \\ 2b_n \end{bmatrix} = 2b
\]

Hessian:

\[
\nabla_x^2 f(x) = \begin{bmatrix}
\frac{\partial^2 f(x)}{\partial x_1^2} & \frac{\partial^2 f(x)}{\partial x_1 \partial x_2} & \cdots & \frac{\partial^2 f(x)}{\partial x_1 \partial x_n} \\
\frac{\partial^2 f(x)}{\partial x_1 \partial x_2} & \frac{\partial^2 f(x)}{\partial x_2^2} & \cdots & \frac{\partial^2 f(x)}{\partial x_2 \partial x_n} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial^2 f(x)}{\partial x_n \partial x_1} & \frac{\partial^2 f(x)}{\partial x_n \partial x_2} & \cdots & \frac{\partial^2 f(x)}{\partial x_n^2}
\end{bmatrix} = \begin{bmatrix} 0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end{bmatrix}
\]

3.2. Write the gradient and Hessian matrix of the quadratic function

\[f(x) = x^T Ax + b^T x + c, \]

where \(x \in \mathbb{R}^n \), matrix \(A \in \mathbb{R}^{n \times n} \), vector \(b \in \mathbb{R}^n \), and \(c \in \mathbb{R} \). (2 pts)

Solution.

Note that \(A \) is not necessarily symmetric.

\[
 f(x) = x^T Ax + b^T x + c = \sum_{j=1}^{n} \sum_{i=1}^{n} x_j A_{ji} x_i + \sum_{i=1}^{n} b_i x_i + c
\]
Gradient:
\[
\nabla_x f(x) = \begin{bmatrix}
\frac{\partial f(x)}{\partial x_1} \\
\frac{\partial f(x)}{\partial x_2} \\
\vdots \\
\frac{\partial f(x)}{\partial x_n}
\end{bmatrix}
= \begin{bmatrix}
(\sum_{i=1}^n a_{1i}x_i + \sum_{j=1}^n x_ja_{j1}) + b_1 \\
(\sum_{i=1}^n a_{2i}x_i + \sum_{j=1}^n x_ja_{j2}) + b_2 \\
\vdots \\
(\sum_{i=1}^n a_{ni}x_i + \sum_{j=1}^n x_ja_{jn}) + b_n
\end{bmatrix}
= \begin{bmatrix}
\sum_{i=1}^n (a_{1i} + a_{i1})x_i + b_1 \\
\sum_{i=1}^n (a_{2i} + a_{i2})x_i + b_2 \\
\vdots \\
\sum_{i=1}^n (a_{ni} + a_{in})x_i + b_n
\end{bmatrix} = A^T x + b
\]

Hessian:
\[
\nabla^2_x f(x) = \begin{bmatrix}
\frac{\partial^2 f(x)}{\partial x_1^2} & \frac{\partial^2 f(x)}{\partial x_1 \partial x_2} & \cdots & \frac{\partial^2 f(x)}{\partial x_1 \partial x_n} \\
\frac{\partial^2 f(x)}{\partial x_2 \partial x_1} & \frac{\partial^2 f(x)}{\partial x_2^2} & \cdots & \frac{\partial^2 f(x)}{\partial x_2 \partial x_n} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial^2 f(x)}{\partial x_n \partial x_1} & \frac{\partial^2 f(x)}{\partial x_n \partial x_2} & \cdots & \frac{\partial^2 f(x)}{\partial x_n^2}
\end{bmatrix}
= \begin{bmatrix}
2a_{11} & a_{12} + a_{21} & \cdots & a_{1n} + a_{n1} \\
a_{21} + a_{12} & 2a_{22} & \cdots & a_{2n} + a_{n2} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n1} + a_{1n} & a_{n2} + a_{2n} & \cdots & 2a_{nn}
\end{bmatrix}
= A + A^T
\]

3.3. Given matrix \(A \in \mathbb{R}^{m \times n} \) where \(m < n \) and \(\text{rank}(A) = m \), and vector \(b \in \mathbb{R}^m \), find a solution \(x \in \mathbb{R}^n \) such that \(Ax = b \). (3 pts)

Solution.

Method 1. Since \(A \) has full row rank and \(m < n \), \(Ax = b \) has infinitely many solutions. One particularly interesting solution is the one with minimal \(\ell_2 \)-norm. Finding it can be formulated as solving the following constrained optimization problem:

\[
\min_{x \in \mathbb{R}^n} \{ f(x) := ||x||_2 = x^\top x \} \\
\text{s.t. } Ax = b
\]

The Lagrangian is \(L(x, \lambda) = x^\top x + \lambda^\top (Ax - b) \), \(\lambda \geq 0 \in \mathbb{R}^m \). The first-order conditions can then be solved:

\[
\frac{\partial L}{\partial x} = 2x + A^\top \lambda = 0 \implies x = -\frac{1}{2} A^\top \lambda \\
\frac{\partial L}{\partial \lambda} = Ax - b = 0
\]

Plugging (1) into (2) yields

\[
-\frac{1}{2} AA^\top \lambda - b = 0 \implies AA^\top \lambda = -2b \implies \lambda = -2(AA^\top)^{-1} b
\]

Since \(\text{rank}(A) = m \), we have \(\text{rank}(AA^\top) = \text{rank}(A) = m \), i.e., the \(m \times m \) square matrix \(AA^\top \) has full rank, therefore it is invertible. By plugging (12) back into (8), we have one solution corresponding to the normal equations from linear least squares.

\[
x = A^\top (AA^\top)^{-1} b
\]
There are many interpretations (see wiki on Moore Penrose psedoinverse: https://en.wikipedia.org/wiki/Moore-Penrose_inverse).

Method 2. Since \(\text{rank}(A) = m\), we can rearrange the columns of \(A\) such that

\[
A = [A_1 A_2]
\]

where \(A_1\) contains \(m\) linearly independent columns of \(A\), and \(A_2\) contains the rest \(n - m\) columns. \(A_1\) is therefore a full-rank \(m \times m\) matrix, i.e. invertible. We can then re-write the system \(Ax = b\) as

\[
\begin{bmatrix} A_1 & A_2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = b
\]

where \(x_1 \in \mathbb{R}^m\) and \(x_2 \in \mathbb{R}^{n-m}\). Then, one solution is given by \(x_1 = A_1^{-1}\) and \(x_2 = 0\).

3.4. Given a nonsingular matrix

\[
A = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix},
\]

write the analytic solution of \(A^{-1}\). (4 pts)

Solution. The cofactor matrix \(C\) is

\[
C = \begin{bmatrix} ei - fh & fg - di & dh - eg \\ ch - bi & ai - cg & bg - ah \\ bf - ce & cd - af & ae - bd \end{bmatrix}
\]

The adjoint of a matrix \(A\); \(\text{adj}(A) = C^\top\). The determinant of \(A\) is

\[
\det(A) = a(ei - fh) - b(di - fg) + c(dh - eg) = aei - afh - bdi + bfg + cdh - ceg
\]

And the inverse of \(A\) is

\[
A^{-1} = \frac{1}{\det(A)} \text{adj}(A)
\]

3.5. Given a nonsingular matrix

\[
M = \begin{bmatrix} A & B \\ C & D \end{bmatrix},
\]

where elements \(A, B, C, D \in \mathbb{R}^{2 \times 2}\), write an analytic solution of \(M^{-1}\).

a. Assume that matrix \(A\) is not singular. (2 pts)

b. Assume that matrix \(D\) is not singular. (2 pts)

c. Assume that both matrices \(A\) and \(D\) are singular. (2 pts)

Solution.

(a.)—(b.) Via Schur Complement

(a.)—(b.) Via Schur Complement
(c.) If M is nonsingular, $M^\top M$ is also nonsingular. Consider the Schur Complement of $(M^\top M)^{-1}M$.

3.6. Assume that matrix $A = [a_{i,j}]$ is not singular. Derive the analytical form of the derivative of f over matrix A (i.e. $[u_{i,j}] = \nabla_A f$, where $u_{i,j} = \partial f / \partial a_{i,j}$) for function $f = tr A^{-1}$. (5 pts)

Solution. (eq. 36 & 40 in Matrix Cookbook) 3 useful facts: (1.) Chain rule: $\partial f(A) = \partial f(\partial A)$ (2.) Derivative of trace: $\partial \text{tr}(A) = \text{tr}(\partial A)$ (3.) Derivative of inverse $\partial A^{-1} = -A^{-1}(\partial A)A^{-1}$. Thus, we have that

$$
\partial \text{tr}(A^{-1}) = \text{tr}(\partial A^{-1}) = \text{tr}(-A^{-1}(\partial A)A^{-1}) = -\text{tr}(A^{-1}(\partial A)A^{-1})
$$

Let $U = \partial A$ so $tr(A^{-1}UA^{-1}) = tr(A^{-1}A^{-1}U) = (A^{-2}, U)$, $U = 1_{u_{ij}}$ the indicator for the partial derivative, so in matrix form, the solution is $A^{-2\top}$.

4. How are the above three questions related to convex optimization? State your answer in three sentences (one sentence for each question). (2 pts)