Convex Optimization CK Cheng Dept. of Computer Science and Engineering University of California, San Diego

Outlines

- Staff
 - Instructor: CK Cheng
 - TAs: Po-Ya Hsu, Chester Holtz, James Lin
- Logistics
 - Websites, Textbooks, References, Grading **Policy**
- Classification
 - History and Category
- Scope
 - Coverage

Information about the Instructor

- Instructor: CK Cheng
- Education: Ph.D. in EECS UC Berkeley
- Industrial Experiences: Engineer of AMD, Mentor Graphics, Bellcore; Consultant for technology companies
- Research: Design Automation, Brain Computer Interface
- Email: ckcheng+203B@ucsd.edu, Office: Room CSE2130
- Office hour will be posted on the course website VLSI Moore's aw
- Websites
 - http://cseweb.ucsd.edu/~kuan
 - http://cseweb.ucsd.edu/classes/wi21/cse203B

3D layout

B Simulation >

(Wearable Sensor

Dehydration Persilo

Staff

Teaching Assistant

- Po-Ya Hsu, p8hsu@ucsd.edu
- Chester Holtz, chholtz@ucsd.edu
- James Lin, til002@ucsd.edu

Logistics: Class Schedule

Class Time: 2-320 PM TTH,

Discussion Session: 2-250 PM F (Separate zoom link) W - W 6

Class website: http://cseweb.ucsd.edu/classes/wi21/cse203B

Piazza link: piazza.com/ucsd/winter2021/cse203b/home

Gradescope link: https://www.gradescope.com/courses/221286

Zoom lecture:

https://ucsd.zoom.us/j/98033436384?pwd=Y3UrMDIIY0py OTRmTGovVENQSXpvdz09

For access code of the links, check with TAs or the instructor

Logistics: Grading

Exercises (Grade by completion)
Assignments (Grade by content)
oject (25%) Team 2-4

Theory 1. Homeworks (40%) · Ho - 13

2. Project (25%) Team 2-

Theory or applications of convex optimization

Survey of the state of the art approaches Convexed

Outlines, references (W4)

• Report (6PM 3/18/2021, W11)

3. Exams (35%) Open book 48 hrs

Midterm, 2/16/2021, T (W7)

5

Logistics: Textbooks

Required text:

· Convex Optimization, Stephen Boyd and Lieven Vandenberghe, Cambridge, 2004

• Review appendix A in the first week

References

- Numerical Recipes: The Art of Scientific Computing, Third Edition, W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, Cambridge University Press, 2007.
- Functions of Matrices: Theory and Computation, N.J. Higham, SIAM, 2008.
- Fall 2016, Convex Optimization by R. Tibshirani, http://www.stat.cmu.edu/~ryantibs/convexopt/
- EE364a: Convex Optimization I, S. Boyd, http://stanford.edu/class/ee364a/

Classification: Brief history of convex optimization

Theory (convex analysis): 1900–1970

Algorithms

- 1947: (cimplex algorithm for linear programming (Dantzig)
- 1970s: ellipsoid method and other subgradient methods
- 1980s & 90s: polynomial-time interior-point methods for convex Optimization (Karmarkar 1984, Nesterov & Nemirovski 1994)
- since 2000s: many methods for large-scale convex optimization **Applications**
- before 1990: mostly in operations research, a few in engineering
- since 1990: many applications in engineering (control, signal processing, communications, circuit design, ...)
- since 2000s: machine learning and statistics

Classification Tradition Linear Nonlinear Discrete Integer **Programming** Programming **Programming** Simplex Lagrange Trial and error multiplier Primal/Dual Gradient descent Cutting plane Interior point Newton's Relaxation method iteration This class Convex Optimization Nonconvex, Discrete Problems Primal/Dual, Lagrange multiplier Local Optimal Solution Search, SA (Simulated Annealing). Gradient descent ILP (Integer Linear Programming), Newton's iteration MLP (Mixed Integer Programming), SAT (Satisfiability), SMT Interior point method

Scope

(Satisfiability Modulo Theories), etc.

Problem Statement (Key word: convexity)

- Convex Sets (Ch2)
- Convex Functions (Ch3) $f(x) \leq 0$
- Formulations (Ch4)

2. Tools (Key word: mechanism)

- Duality (Ch5)
- Optimal Conditions (Ch5) K.K.T.

3. Applications (Ch6,7,8) (Key words: complexity, optimality)

Coverage depends upon class schedule

4. Algorithms (Key words: Taylor's expansion)

- Unconstrained (Ch9)
- Equality constraints (Ch10)
- Interior method (Ch11)

Scope of Convex Optimization

For a convex problem, a local optimal solution is also a global optimum solution.

CSE203B Convex Optimization

• Optimization of convex function with constraints which form convex domains.

Background

- Linear algebra $p(x) = \alpha_n x$
- Polynomial and fractional expressions
- Log and exponential functions
- Log and exponential functions
- Optimality of continuously differentiable functions

Concepts and Techniques to Master in CSE203B

- Convexity
 - Hyperplane $\chi \in \mathbb{R}^{1}$
- Duality
- KKT optimality conditions

d det A

11

12