CSE203B Convex Optimization: Chapter 10: Equality Constraint Optimization

CK Cheng

Dept. of Computer Science and Engineering University of California, San Diego

Chapter 10 Equality Constrained Optimization

- Introduction
- Formulations
 - Eliminating Equality Constraints Using Algebraic Replacement
 - Dual Formulation
 - KKT Condition
- Newton's Method
- Infeasible Start Newton's Method
- Summary

Introduction

Objective Function without Constraints: (Chapter 9) Gradient descent, Newton's methods

KKT Linear Equations:

Quadratic obj function + linear equality constraints

Newton's Method:

Twice differentiable obj function + linear equality constraints

Interior Point Method: (Chapter 11)

Twice differentiable obj function + linear equality + inequality constraints

Introduction

Formulation 0:

Equality → Inequality

Formulation 1:

Algebraic operation to eliminate the equality constraint

Formulation 2:

Dual formulation

Formulation 3:

KKT conditions

$$\min f(x)$$

s. t. $Ax = b$

where $f: \mathbb{R}^n \to \mathbb{R}$, convex, twice continuously differentiable, and $A \in \mathbb{R}^{p \times n}$, $rank \ A = p, p \le n$

Formula 0 Inequality

$$min f(x)$$
s. t. $Ax \ge b$

$$-Ax \le -b$$

$$\min f(x)$$

s. t. $Ax = b$

 $f: \mathbb{R}^n \to \mathbb{R}$, convex, twice continuously differentiable, and $A \in \mathbb{R}^{p \times n}$, $rank \ A = p, p \le n$

Formula 1 Algebraic operation to eliminate the equality constraint

$$\min f(x) = f(Fz + x_o)$$

$$z \in R^{n-p}, Ax_o = b, rank F = n - p, AF = 0$$

Formula 1: Eliminating equality constraints using algebraic replacement

$$\min f(x)$$
s. t. $Ax = b$, $rank A = p, p \le n$
Let $Ax_0 = b$, nullspace of A is
$$F \in R^{n \times (n-p)}, \quad i.e. AF = 0$$
We can write $x = x_0 + Fz$, $z \in R^{n-p}$
Thus $f(x) = f(x_0 + Fz)$
To minimize $f(x) = f(x_0 + Fz)$
we need $\nabla_z f(x_0 + Fz) = F^T \nabla f(x)|_{x = x_0 + Fz} = 0$.

Remark: This is equivalent to $\nabla f(x) = -A^T v$, $v \in \mathbb{R}^p$

Example: $\min f(x_1, x_2)$

$$[A_1 \quad A_2] \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = b, \qquad A_1 x_1 + A_2 x_2 = b$$

$$x_1 = A_1^{-1}(b - A_2x_2)$$
, Suppose the A_1 is nonsingular.

$$f(x_1, x_2) = f(A_1^{-1}(b - A_2x_2), x_2)$$

Therefore $\nabla_{x_2} f(A_1^{-1}(b - A_2 x_2), x_2) = 0$ derive the optimal solution.

Remark: The equality constraint elimination, e.g. A_1^{-1} operation, may destroy the sparsity of the system.

$$\min f(x)$$

s. t. $Ax = b$

 $f: \mathbb{R}^n \to \mathbb{R}$, convex, twice continuously differentiable, and $A \in \mathbb{R}^{p \times n}$, $rank \ A = p, p \le n$

Formula 2 Lagrange Dual Function

$$\max_{v} g(v) = \max_{v} \min_{x} f(x) + v^{T}Ax - v^{T}b
= \max_{v} \left[-v^{T}b + \min_{x} (f(x) + v^{T}Ax) \right]
= \max_{v} \left[-v^{T}b - \max_{x} (-v^{T}Ax - f(x)) \right]
= \max_{v} (-v^{T}b - f^{*}(-A^{T}v))$$

Example:
$$\min f(x) = \frac{1}{2}x^T P x + q^T x + r$$
$$s. t. \quad Ax = b, \quad P \in S_{++}^n$$

- (1) Lagrangian: $L(x,v) = \frac{1}{2}x^TPx + q^Tx + r + v^T(Ax b)$
- (2) Min L vs. x, we have $\nabla_x L(x, v) = Px + q + A^T v = 0$
- (3) Thus, $x = -P^{-1}(q + A^T v)$
- (4) Therefore, $G(v) = L(x = -P^{-1}(q + A^T v), v)$ = $-\frac{1}{2}v^T A P^{-1} A^T v - (b^T + q^T P^{-1} A^T)v - \frac{1}{2}q^T P^{-1}q + r$
- (5) Min G vs. v, we have $\nabla G(v) = -AP^{-1}A^{T}v (b + AP^{-1}q) = 0$
- (6) Thus, $v = -(AP^{-1}A^T)^{-1}(b + AP^{-1}q)$
- (7) Therefore, $\max_{v} G(v) = \frac{1}{2} (AP^{-1}q + b)^{T} (AP^{-1}A^{T})^{-1} (AP^{-1}q + b) \frac{1}{2} q^{T} P^{-1} q + r$

Ex: min
$$f(x) = -\sum_{i=1}^{n} \log x_i$$
, $x_i > 0$
s.t. $Ax = b$

1.
$$L(x, \lambda, \nu) = -\sum_{i=1}^{n} \log x_i - \lambda^T x + \nu^T A x - \nu^T b$$

$$2. G(\lambda, v) = \min_{x} -\lambda^{T} x + vAx - v^{T} b - \sum_{i=1}^{n} \log x_{i}$$

3. Let $\min_{x} g(x, y) = y^{T}x - \sum_{i=1}^{n} \log x_{i}$

$$\frac{\partial g(x,y)}{\partial x} = y - \begin{bmatrix} \frac{1}{x_1} \\ \vdots \\ \frac{1}{x_n} \end{bmatrix} = 0, \quad x_i = \frac{1}{y_i}$$

We have
$$\min_{x} g(x, y) = n - \sum \log \left(\frac{1}{y_o}\right) = n + \sum_{i=1}^{n} \log y_i$$

4. Thus, we have $\min_{x} g(x, A^T v) = n + \sum \log(A^T v)_i$ Dual $\max_{x} L(v) = -b^T v + n + \sum \log(A^T v)_i$, $A^T v > 0$

$$\min f(x)$$

s. t. $Ax = b$

 $f: \mathbb{R}^n \to \mathbb{R}$, convex, twice continuously differentiable, and $A \in \mathbb{R}^{p \times n}$, $rank \ A = p, p \le n$

Formula 3 KKT condition

$$\nabla f(x^*) + \sum_{i=1}^{m} \nabla f_i(x^*) \lambda_i^* + \sum_{i=1}^{p} \nabla h_i(x^*) v_i^* = 0$$

$$f_i(x^*) \leq 0$$

$$h_i(x^*) = 0$$

$$\lambda_i^* \geq 0$$

$$\sum_i \lambda_i^* f_i(x^*) = 0$$

$$KKT \ condition: \begin{cases} \nabla f(x^*) + A^T v^* = 0 \\ Ax^* = b \end{cases}$$

$$Relation \ of \ v^* \ and \ x^*: \ A^T v^* = -\nabla f(x^*)$$

$$v^* = -(AA^T)^{-1} A \nabla f(x^*)$$

Example:
$$min f(x) = \frac{1}{2}x^T P x + q^T x + r$$

s.t. $Ax = b$, $P \in S^n_+$
KKT Conditions

$$\begin{bmatrix} P & A^T \\ A & 0 \end{bmatrix} \begin{bmatrix} x^* \\ v^* \end{bmatrix} = \begin{bmatrix} -q \\ b \end{bmatrix}$$

- (1) We know that Ax = b has feasible solution because $p \le n$.
- (2) We have n + p equations for n + p variables.
- (3) If $\begin{bmatrix} P & A^T \\ A & 0 \end{bmatrix}$ is nonsingular, then the problem has a unique optimal solution.
- (4) If $\begin{bmatrix} P & A^T \\ A & 0 \end{bmatrix}$ is singular then the problem is unbounded.

Remark:
$$\begin{bmatrix} P & A^T \\ A & 0 \end{bmatrix} \begin{bmatrix} x^* \\ v^* \end{bmatrix} = \begin{bmatrix} -q \\ b \end{bmatrix}$$
 relate to one iteration of

Newton's method for a nonlinear function f(x).

Where
$$P = \nabla^2 f(x)$$
, $q = \nabla f(x)$, $r = f(0)$

(3). Nonsingularity

i.
$$N(P) \cap N(A) = \{0\}$$

ii.
$$Ax = 0, x \neq 0 \rightarrow x^T Px > 0$$

iii.
$$F^T P F > 0$$
 for $F \in R^{n \times (n-p)}$, $R(F) = N(A)$

iv.
$$P + A^T QA > 0$$
 for some $Q \ge 0$

Property ii:

If
$$\begin{bmatrix} P & A^T \\ A & 0 \end{bmatrix}$$
 is singular, we can find $\begin{bmatrix} x \\ v \end{bmatrix}$

so that

$$\begin{bmatrix} P & A^T \\ A & 0 \end{bmatrix} \begin{bmatrix} x \\ v \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \implies Ax = 0$$

Therefore, we have

$$\begin{bmatrix} x^T & v^T \end{bmatrix} \begin{bmatrix} P & A^T \\ A & 0 \end{bmatrix} \begin{bmatrix} x \\ v \end{bmatrix} = x^T P x + 2x^T A v = x^T P x = 0$$

Proof (4): Let
$$\begin{bmatrix} P & A^T \\ A & 0 \end{bmatrix} \begin{bmatrix} u \\ w \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Rightarrow Pu = A^T w$$
, $Au = 0$
Given $Ax_0 = b$, we have
$$f(x_0 + tu) = \frac{1}{2}(x_0 + tu)^T P(x_0 + tu) + q^T(x_0 + tu) + r$$

$$= \frac{1}{2}x_0^T Px_0 + tu^T Px_0 + \frac{1}{2}t^2 u^T Pu + q^T x_0 + tq^T u + r$$
1. $\frac{1}{2}t^2 u^T Pu = \frac{1}{2}t^2 u^T (-A^T w) = 0$
2. $u^T Px_0 = x_0^T Pu = x_0^T (-A^T w) = -w^T Ax_0 = -w^T b$
Thus, $f(x_0 + tu) = \frac{1}{2}x_0^T Px_0 + t(-w^T b + q^T u) + q^T x_0 + r$
Therefore, when $-w^T b + q^T u \neq 0$, $f(x)$ is unbounded

Newton's Method

 $\min f(x)$ s. t. Ax = b

(1) Taylor's expansion to approximate f(x) $f(x + \Delta x) \approx f(x) + \nabla f(x)^T \Delta x + \frac{1}{2} \Delta x^T \nabla^2 f(x) \Delta x$ Ax = b, $A\Delta x = 0$ $(A(x + \Delta x) = b)$

(2) KKT conditions for the quadratic obj.

$$\begin{bmatrix} \nabla^2 f(x) & A^T \\ A & 0 \end{bmatrix} \begin{bmatrix} \Delta x \\ v \end{bmatrix} = \begin{bmatrix} -\nabla f(x) \\ 0 \end{bmatrix}$$

(3) From (2), $\left(\nabla^2 f(x)\Delta x + A^T v = -\nabla f(x)\right)$ We have $\nabla f(x)^T \Delta x = -(\nabla^2 f(x)\Delta x + A^T v)^T \Delta x$ $= -\Delta x^T \nabla^2 f(x)\Delta x - v^T A\Delta x = -\Delta x^T \nabla^2 f(x)\Delta x$ Thus $f(x) + \nabla f(x)^T \Delta x + \frac{1}{2}\Delta x^T \nabla^2 f(x)\Delta x$ $= f(x) - \frac{1}{2}\Delta x^T \nabla^2 f(x)\Delta x$

The amount that the obj. drops

Newton's Method

Algorithm.

Given $x \in D$, Ax = b, $\epsilon > 0$ Repeat

- 1. Solve *NE* to find $\Delta x \& \lambda^2 = \Delta x^T \nabla^2 f(x) \Delta x$
- 2. Quit if $\frac{\lambda^2}{2} \le \epsilon$
- 3. Line Search *t*
- 4. Update $x := x + t\Delta x$

Newton's Method: Affine Invariant

$$\min f(x)$$
$$Ax = b$$

Theorem: Newton's step is invariant to affine transform.

Proof: Let
$$x = Ty$$
, $T \in \mathbb{R}^{nn}$, $f(x) = f(Ty) = \overline{f}(y)$

For the problem

$$\min \bar{f}(y)$$
$$ATy = b$$

- 1. We have $\nabla_y \overline{f}(y) = T^T \nabla_x f(Ty)$, $\nabla_y^2 \overline{f}(y) = T^T \nabla^2 f(Ty) T$
- 2. For Δy_{nt} at y, we have the Newton step,

$$\begin{bmatrix} T^T \nabla^2 f(x) T & T^T A^T \\ A T & 0 \end{bmatrix} \begin{bmatrix} \Delta y_{nt} \\ \bar{v} \end{bmatrix} = \begin{bmatrix} -T^T \nabla f(Ty) \\ 0 \end{bmatrix},$$

which is equivalent to

$$\begin{bmatrix} \nabla^2 f(x) & A^T \\ A & 0 \end{bmatrix} \begin{bmatrix} \Delta x \\ v \end{bmatrix} = \begin{bmatrix} -\nabla f(x) \\ 0 \end{bmatrix}$$

Newton's Method for Reduced Problem

$$\min f(x) = f(Fz + x_o)$$

$$z \in R^{n-p}, Ax_o = b, rank F = n - p, AF = 0$$

$$pn \ n(n-p)$$

We have

$$\nabla_{z} f(Fz + x_o) = F^T \nabla_{x} f(Fz + x_o)$$

$$\nabla_{z}^2 f(Fz + x_o) = F^T \nabla_{x}^2 f(Fz + x_o) F$$

Show this by Taylor's expansion

Thus, the reduced problem has Newton iteration derivation,

$$\Delta z = -(\nabla_z^2 f)^{-1} \nabla_z f = -(F^T \nabla_x^2 f F)^{-1} F^T \nabla_x f$$

$$\Delta x = F \Delta z = -F(F^T \nabla^2 f(x) F)^{-1} F^T \nabla f(x)$$

Theorem: For the reduced operation, the derived ∇x , v are the same solution as the original NE process.

Proof: Let
$$\Delta x = F\Delta z$$
, $v = -(AA^T)^{-1}A(\nabla f(x) + \nabla^2 f(x)\Delta x)$

We can show that the original NE equations hold, i.e.

$$\nabla^2 f(x) \Delta x + \nabla f(x) + A^T v = 0 \& A \Delta x = 0$$

Newton's Method for Reduced Problem

Proof:

1. For the first equation, we multiply the left expression from

the left, i.e.
$$\begin{bmatrix} F_{(n-p)n}^T \\ A_{(pn)} \end{bmatrix} \begin{bmatrix} \nabla^2 f(x) \Delta x + A^T v + \nabla f(x) \end{bmatrix} = \begin{bmatrix} F^T \nabla^2 f(x) \Delta x + F^T A^T v + F^T \nabla f(x) \\ A \nabla^2 f(x) \Delta x + A A^T v + A \nabla f(x) \end{bmatrix} = \begin{bmatrix} 0 & (1) \\ 0 & (2) \end{bmatrix}$$

$$(1) - F^T \nabla^2 f(x) F(F^T \nabla^2 f(x) F)^{-1} F^T \nabla f(x) + F^T \nabla f(x) + F^T A^T v = 0$$

$$(2) A \nabla^2 f(x) \Delta x + A A^T \left(-(A A^T)^{-1} A(\nabla f(x) + \nabla^2 f(x) \Delta x) \right) + A \nabla f(x) = 0$$
Since
$$\begin{bmatrix} F_{(n-p)n}^T \\ A_{(pn)} \end{bmatrix}$$
 is a full ranked matrix, we can conclude that
$$\nabla^2 f(x) \Delta x + A^T v + \nabla f(x) = 0$$

2. For the second equation, we have $A\Delta x = AF\Delta z = 0$, since AF = 0 by construction.

Infeasible Start Newton's Method

The search of the feasible start point,

$$\begin{bmatrix} \nabla^2 f(x) & A^T \\ A & 0 \end{bmatrix} \begin{bmatrix} \Delta x \\ v \end{bmatrix} = -\begin{bmatrix} \nabla f(x) \\ Ax - b \end{bmatrix}$$

We can write in incremental derivation,

$$\begin{bmatrix} \nabla^2 f(x) & A^T \\ A & 0 \end{bmatrix} \begin{bmatrix} \Delta x \\ \Delta v \end{bmatrix} = -\begin{bmatrix} \nabla f(x) + A^T v \\ Ax - b \end{bmatrix} \qquad \frac{r_{dual}}{r_{pri}}$$

Newton Method: Infeasible Start

Algorithm.

Given
$$x \in D$$
, v , tolerance $\epsilon > 0$, $\alpha \in \left(\frac{0,1}{2}\right)$, $\beta \in (0,1)$. Repeat

- 1. Compute primal and dual Newton steps Δx_{nt} , Δv_{nt}
- 2. Line search on $||r(x,v)||_2 = ||(r_{dual}(x,v),r_{pri}(x,v))||_2$ $t \coloneqq 1$ while $||r(x+t\Delta x_{nt},v+t\Delta v_{nt})||_2 > (1-\alpha t)||r(x,v)||_2$ $t \coloneqq \beta t$.
- 3. Update $x \coloneqq x + t\Delta x_{nt}, v \coloneqq v + t\Delta v_{nt}$ Until Ax = b and $||r(x, v)||_2 \le \epsilon$

Summary

KKT Linear Equations:

Quadratic objective function + linear equality constraints

Newton's Method:

Twice differentiable obj function + linear equality constraints

Interior Point Method:

Twice differentiable obj function + linear equality + inequality constraints