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Introduction

Objective Function without Constraints: (Chapter 9)
Gradient descent, Newton’s methods

KKT Linear Equations:
Quadratic obj function + linear equality constraints

Newton’s Method:
Twice differentiable obj function + linear equality constraints

Interior Point Method: (Chapter 11)
Twice differentiable obj function + linear equality + inequality
constraints



Introduction

Formulation O:
Equality — Inequality

Formulation 1:
Algebraic operation to eliminate the equality constraint

Formulation 2:
Dual formulation

Formulation 3:
KKT conditions



Formulation O

min f(x)
s.t. Ax =D
where f: R™ — R, convex, twice continuously

differentiable, and A € RP*™",rank A = p,p < n

Formula 0 Inequality
min f(x)
s.t. Ax = b

—Ax < —b



Formulation 1

min f(x)
s.t. Ax =b

f:R™ — R, convex, twice continuously differentiable,
and A € RP*™", rank A =p,p <n

Formula 1 Algebraic operation to eliminate the
equality constraint

min f(x) = f(Fz + x,)
Z€R"VP Ax, = b,rank F =n —p,AF =0



Formulation 1

Formula 1: Eliminating equality constraints using algebraic
replacement

min f(x)

s.t. Ax = b, rank A =p,p<n
Let Ax, = b, nullspace of A is

FeR™m-P) e AF =0

We canwrite x = xo + Fz, z€ R"P
Thus f(x) = f(xy + Fz)
To minimize f(x) = f(xo + F2z)
we need V,f (xo + Fz) = F'Vf(X)|y=x,+Frz = 0.

Remark: This is equivalentto Vf(x) = —ATv, v € RP



Formulation 1

Example: min f (xq1, x,)

X
[Al Az] [x;] = b, A1x1 + A2X2 =D

x; = A7H(b — Ayxy), Suppose the A, is nonsingular.

flx1,x7) = f(Afl(b — A7), X7)

Therefore V, f(A7"(b — Ayx,),x;) = 0 derive the optimal
solution.

Remark: The equality constraint elimination, e.g. A7!
operation, may destroy the sparsity of the system.



Formulation 2

min f(x)
s.t. Ax =b

f:R™ — R, convex, twice continuously differentiable,
and A € RP*™", rank A =p,p <n

Formula 2 Lagrange Dual Function
max g(v) = max min f(x) + viAx — v'b
1% 1% X
= max [—vT'b + min (f(x) + v Ax)]
1% X
= max [-v'b — max (—vTAx — f(x))]
X

(%

= max (—v'b — f*(—ATv))



Formulation 2

Example: min f(x) = %xTPx +qglx+r
s.t. Ax=b, PeS},

(1) Lagrangian: L(x,v) = %xTPx +q'x+r+vi(Ax — b)
(2) Min L vs. x, we have V,.L(x,v) = Px+q + ATv =0
(3) Thus, x = —P " 1(q + A" v)
(4) Therefore, G(v) = L(x = —P (g + ATv) V)

=——v AP~ ATy — (bT + TP 1AT)v ——q"P g + 1
(5) Min G vs. v, we have VG (v) = —AP~ 1ATv —(b+APg) =0
(6) Thus, v = —(AP~*AT)"Y(b + AP 1q)
(7) Therefore, max G(v)=

%(AP‘lq + b)T(AP1AT) "1 (AP~1q + b) — %qTP‘lq +r
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Formulation 2

Ex:min f(x) =—)i_,logx;, x; >0
st. Ax=0>
1. L(x, A, v) = =Y" logx; — ATx+vT Ax-v"b

2. G(A,v) = min—A'x + vAx —v'h — ¥, logx;

X
3.Let ming(x,y) =y'x — X" logx;
X
-

99(x,y) =y xl 0, . 1

ox 1 Yi

[ XN
We have mxin glx,y) =n— ) log (y—t) =n+ ), logy;
4. Thus, we have mxin glx, ATv) =n + Y log(ATv);
Dual max L(v) = =bTv+n + Y log(ATv);,ATv > 0
(%
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Formulation 3

min f(x)
s.t. Ax = b
f:R™ = R, convex, twice continuously differentiable,
and A € RP*" rank A=p,p<n
Formula3 KKT condition

VE(x™) + Z2 VA + Zis, Vhi (v = 0

fi(x*) <0
hi(x*) =0
220

idifi(x*) =0
* T . .*x __
KKT condition: Vi(x®) + ATv" =0
Ax* =Db
Relation of v* and x*: ATv* = —Vf(x*)
v* = —(AA") 1AV f (x")
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Formulation 3
Example: min f(x) = %xTPx +qlx+7r
s.t. Ax=b, PeSt
KKT Conditions

2 ol =15

(1) We know that Ax = b has feasible solution because p < n.
(2) We have n + p equations for n + p variables.

T
(3) If fl ‘% IS nonsingular, then the problem has a unique

optimal solution.

[ T
(4) If Z ‘% IS singular then the problem is unbounded.

Remark: P AT“ ] [ q] relate to one iteration of

Newton’s method for a nonlinear function f (x).
Where P = V2f(x),q = Vf(x),r = f(0)
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Formulation 3

(3). Nonsingularity
i. N(P)NN(A) = {0}
ii. Ax=0,x#0 - xTPx >0
iii. FTPF >0 for F € R P) R(F) = N(4)
iv. P + ATQA > 0 for some Q =0
Property ii:

T
If [P A ] Is singular, we can find [x]
A 0 %
so that
T

P A “ ] = Ax =0

Therefore we have
T
IxT  »T] P A “ ]—xTPx+2xTAv—xTPx—O
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Formulation 3

Proof (4): Let [P AT“ | = [0] = Pu=ATw, Au=0

Given Ax, = b, we have

f(xo+tu) = %(xo + tu)TP(xo + tu) + g7 (xg + tu) + 7
= %ngxO + tu’Pxy + % t2u'Pu+qfxg +tqtu+r

1 ltz Tpy = ltz T(—ATw) = 0

2. uTPxO = x} Pu = x) (=ATw) = —wTAxy = —wTh

Thus, f(xg + tu) = —xOPxO +t(—wlb+q"uw) +q'xg + 7

Therefore, when —w’ b + qTu # 0, f(x) is unbounded
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Newton’s Method

min f(x)
s.t.Ax =b
(1) Taylor’s expansion to approximate f (x)

fix+Ax) = f(x) + Vf(x)TAx + %AxTsz(x)Ax

Ax =b, AAx =0 (A(x + Ax) = b)
(2) KKT conditions for the quadratic obj.

[sz(x) AT] [Ax] [—Vf(x)]

A 0

(3) From (2), (V2f (x)Ax + ATv = —Vf (x))

We have Vf(x)TAx = —(V2f(x)Ax + ATv)T Ax

= —AxTV72f(x)Ax — vT AAx = —AxTV? f(x)Ax
Thus f(x) +Vf(x)TAx + %AxTsz(x)Ax

= f(x) — %AxTsz(x)Ax
The amount that the obj. drops
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Newton’s Method

Algorithm.

Givenx € D,Ax =b,e > 0
Repeat
1. Solve NE to find Ax & A% = AxTV?f(x)Ax
2
2. Quitif>-<e
3. Line Search t
4. Update x :== x + tAx
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Newton’s Method: Affine Invariant

min f(x)

Ax =b
Theorem: Newton’s step 1s invariant to affine transform.
Proof: Letx = Ty, T € R™, f(x) = f(Ty) = f(y)
For the problem

min f (y)

ATy =b
1. We have 7, f ()= TV, f (Ty), V5 f (v) = T"V?f(Ty)T
2. For Ay, at y, we have the Newton step,
TV COT 17AT) (] _ [<TTVFI))
AT ’

which is equivalent to

P -1
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Newton’s Method for Reduced Problem

min f(x) = f(Fz + x,)
zZ€R"P Ax, = b,rank F =n—p,AF =0
pn n(n —p)
We have ) Show this by
Vof (Fz +x0) = F Vef (FZ + %) Taylor’s expansion
Vef(Fz+x,) = F'V2f(Fz + x,)F
Thus, the reduced problem has Newton iteration derivation,
Az ==V )TV f = —(FTVfF) T FI U f
Ax = FAz = —F(FTV2f(x)F)"'FTVf (x)
Theorem: For the reduced operation, the derived Vx, v are the
same solution as the original NE process.
Proof: Let Ax = FAz,v = —(AAT)7TA(Vf(x) + V?f(x)Ax)
We can show that the original NE equations hold, I.e.
V2f(x)Ax +Vf(x) +ATv =0 & AAx =0

19



Newton’s Method for Reduced Problem

Proof:

1. For the first equation, we multiply the left expression from
T

the left, i.e. [Fi’l"(‘m)" ] [V2f(x)Ax + ATv + Vf(x)] =
n

[FTVZ fl)Ax + FTATv + FTVf(x)] B [0 (1)]

AVZF()Ax + AATv + AVF(x) | 10 (2)
(1) —FTV2f()F(FTV2f()F)'FTVf(x) + FTVf(x) +
FTATy =0
(2) AV2f (x)Ax + AAT (—(AAT) LAV (x) + V2 f(x)Ax)) +
AVf(x) =0

Fl _ . .
Since [ (n=p)n ] is a full ranked matrix, we can conclude that

(rn)
’ V2f(x)Ax + ATv + Vf(x)=0

2. For the second equation, we have AAx = AFAz = 0, since
AF = 0 by construction. 20



Infeasible Start Newton’s Method

The search of the feasible start point,

[sz(x) AT] [Ax] _ Vf(x)]
v

A 0 Ax — b
We can write in incremental derivation,
[sz(x) AT] [Ax] _ _[Vfx)+ A"
A 0 ItAv Ax — b

|

Tdual
rpri
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Newton Method: Infeasible Start

Algorithm.

Given x € D, v, tolerance € > 0, ae( ) B € (0,1).
Repeat
1. Compute primal and dual Newton steps Ax,,;, Av,,;
2. Line search on [|r(x, V)I|, = || (rguar (%, v), Tpri (2, V)1

t=1
while |[r(x + tAxne, v + £ Avyl| >(L-at)|Ir(x, v
t := ft.

3. Update x :=x + tAx,;;, vi=v+t Av,;
Until Ax = b and ||r(x, v)||2 <e€
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Summary

KKT Linear Equations:
Quadratic objective function + linear equality constraints

Newton’s Method:
Twice differentiable obj function + linear equality constraints

Interior Point Method:

Twice differentiable obj function + linear equality + inequality
constraints
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