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Convex Optimization Problem:

3

1. 𝑓0 𝑥 is a convex function

2. For 𝑓𝑖 𝑥 ≤ 𝑏𝑖 , 𝑖 = 1,… ,𝑚

min
𝑥

𝑓0 𝑥 , 𝑥 ∈ 𝑅𝑛

Subject to

𝑓𝑖 𝑥 ≤ 𝑏𝑖 , 𝑖 = 1,⋯ ,𝑚

𝑥|𝑓𝑖(𝑥) ≤ 𝑏𝑖 , 𝑖 = 1,⋯ ,𝑚 is a convex set



Convex Optimization Problem:
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A. Convex Function Definition:

𝑓𝑖 𝛼𝑥 + 𝛽𝑦 ≤ 𝛼𝑓𝑖 𝑥 + 𝛽𝑓𝑖 𝑦 , ∀𝛼 + 𝛽 = 1, 𝛼, 𝛽 ≥ 0



Convex Optimization Problem:
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A. Convex Function Definition:

𝑓𝑖 𝛼𝑥 + 𝛽𝑦 ≤ 𝛼𝑓𝑖 𝑥 + 𝛽𝑓𝑖 𝑦 , ∀𝛼 + 𝛽 = 1, 𝛼, 𝛽 ≥ 0

B. Convex Set Definition: ∀𝑥, 𝑦 ∈ 𝐶

We have 𝛼𝑥 + 𝛽𝑦 ∈ 𝐶, ∀𝛼 + 𝛽 = 1, 𝛼, 𝛽 ≥ 0



1. Set Convexity and Specification: Convexity

6

A set 𝑆 is convex if we have 

𝛼𝑥 + 𝛽𝑦 ∈ 𝑆, ∀𝛼 + 𝛽 = 1, 𝛼, 𝛽 ≥ 0, ∀𝑥, 𝑦 ∈ 𝑆
Examples:



1. Set Convexity and Specification: Convexity
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A set 𝑆 is convex if we have 

𝛼𝑥 + 𝛽𝑦 ∈ 𝑆, ∀𝛼 + 𝛽 = 1, 𝛼, 𝛽 ≥ 0, ∀𝑥, 𝑦 ∈ 𝑆
Remark: 

1. Most used sets in the class

1. Scalar set: 𝑆 ⊂ 𝑅
2. Vector set: 𝑆 ⊂ 𝑅𝑛

3. Matrix set: 𝑆 ⊂ 𝑅𝑛×𝑚

2. Set S is convex if every two points in S has the 

connected straight segment in the set.

3. For convex sets 𝑆1 and 𝑆2: 𝑆1 ∩ 𝑆2 is also convex



1. Set Convexity and Specification: 

Set Specification via Qualification or Enumeration

Qualification Oriented Expression

Enumeration Oriented Expression 
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𝑆𝑄 = {𝑥|𝐴𝑥 ≤ 𝑏, 𝑥 ∈ 𝑅𝑛}

𝑆𝐸 = {𝐴𝑥 | 𝑥 ∈ 𝑅+
𝑛}

Qualification Oriented 

Expression:

Constraints

Min 𝑓𝑜 𝑥
Subject to

𝐴𝑥 ≤ 𝑏, 𝑥 ∈ 𝑅𝑛

Enumeration Oriented 

Expression:

Obj function 

Min 𝑓𝑜 𝐴𝑥 , 𝑥 ∈ 𝑅+
𝑛



1. Qualification vs Enumeration Oriented Description

Qualification Oriented Expression
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Example: {𝑥|𝐴𝑥≤𝑏}

𝑥1 +2𝑥2 +3𝑥3 ≤ 4

2𝑥1 −𝑥2 ≤ 3

𝑥2 +𝑥3 ≤ 5

𝑥3 ≤ 10

𝐴 =

1 2 3
2 −1 0
0 1 1
0 0 1

, 𝑥 =

𝑥1
𝑥2
𝑥3

, 𝑏 =

4
3
5
10

Remark: Simultaneous linear 

constraints imply AND, 

Intersection of the constraints



𝑆1 = {𝑥|𝐴𝑥 ≤ 𝑏, 𝑥 ∈ 𝑅𝑛} is a convex set
Proof:
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Given two vectors 𝑢, 𝑣 ∈ 𝑆1, 𝑖. 𝑒. 𝐴𝑢 ≤ 𝑏, 𝐴𝑣 ≤ 𝑏

For 𝑤 = 𝜃1𝑢 + 𝜃2𝑣, ∀𝜃1 + 𝜃2 = 1, 𝜃1, 𝜃2 ≥ 0

we have 𝐴𝑤 ≤ 𝑏.
(𝐴𝑤 = 𝜃1𝐴𝑢 + 𝜃2𝐴𝑣 ≤ 𝜃1𝑏 + 𝜃2𝑏 = 𝑏)

The inequality implies 𝑤 ∈ 𝑆1
By definition, set 𝑆1is convex.

Remark: 

1. Simultaneous linear constraints imply AND, 

Intersection of the constraints

2. Linear constraints constitute a convex set.

1. Qualification vs. Enumeration Oriented Description



1. Qualification vs. Enumeration Oriented Description

Example:
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𝑆2 = 𝑥 𝐴𝑥 ≥ 𝑏, 𝑥 ∈ 𝑅𝑛}

𝑆3 = 𝑥 𝐴𝑥 = 𝑏, 𝑥 ∈ 𝑅𝑛}



1. Qualification Oriented Expression

Example:
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𝑆 = 𝑥 ∈ 𝑅𝑚 𝑝𝑥(𝑡) ≤ 1 for 𝑡 ≤
𝜋

3
}

𝑤ℎ𝑒𝑟𝑒 𝑝𝑥 𝑡 = 𝑥1 cos 𝑡 + 𝑥2 cos 2𝑡 +⋯+ 𝑥𝑚 cos𝑚𝑡



1. Enumeration Oriented Expression

Expression Conversion

13

Example: {𝑥|𝐴𝑥 ≤ 𝑏, 𝑥 ∈ 𝑅𝑛} 𝑣𝑠 {𝑈𝜃| 1𝑇𝜃 = 1, 𝜃 ∈ 𝑅+
𝑚}

1 1
1 0
−1 0
0 −1

𝑥1
𝑥2

≤

2
1
1
1

1 1 −1 −1
1 −1 −1 3

𝜃1
𝜃2
𝜃3
𝜃4



1. Qualification vs. Enumeration Oriented Description
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Remark: 

Qualification Oriented Expression: Constraints of the problem 

Enumeration Oriented Enumeration: The objective function

The interchange may not be trivial.

𝑝 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛𝑠
𝑛 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠

𝑐𝑜𝑚𝑏 𝑝, 𝑛 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒
𝑣𝑒𝑟𝑡𝑒𝑥 𝑝𝑜𝑖𝑛𝑡𝑠.

min 𝑓0(𝑥)
𝑠. 𝑡. 𝐴𝑥 ≤ 𝑏
𝑥 ∈ 𝑅𝑛

min 𝑓0(𝑈𝜃)
𝑠. 𝑡. 𝐼𝑇𝜃 ≤ 1

𝑈 ∈ 𝑅𝑛𝑚, 𝜃 ∈ 𝑅+
𝑚

Every vector 𝑢𝑖 in matrix 𝑈 is a solution of 

n equations in constraint 𝐴𝑥 ≤ 𝑏



1. Qualification vs. Enumeration Oriented Description

Mixed Description
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𝑆4 =
𝐴𝑥 + 𝑏

𝑐𝑇𝑥 + 𝑑
𝑐𝑇𝑥 + 𝑑 > 0, 𝑥 ∈ 𝐶4} (Projective Function)

𝑆5 =
𝑧

𝑡
𝑧 ∈ 𝑅𝑛, 𝑡 > 0, 𝑧, 𝑡 ∈ 𝐶5} (Perspective Function)

𝑆4 is convex if 𝐶4 is convex
𝑆5 is convex if 𝐶5 is convex



1. Qualification vs. Enumeration Oriented Description

Statement: 𝑆5 𝑖𝑠 𝑐𝑜𝑛𝑣𝑒𝑥 if 𝐶5 𝑖𝑠 𝑐𝑜𝑛𝑣𝑒𝑥. 

Proof:
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Given 
𝑧1

𝑡1
∈ 𝑆5,

𝑧2

𝑡2
∈ 𝑆5, let us set 

𝑧3 = 𝛼𝑧1 + β𝑧2, 𝑡3 = 𝛼𝑡1 + 𝛽𝑡2, ∀𝛼 + 𝛽 = 1, 𝛼, 𝛽 ≥ 0

𝑧3
𝑡3

=
𝛼𝑧1 + β𝑧2
𝛼𝑡1 + β𝑡2

=
𝛼𝑡1

𝛼𝑡1 + β𝑡2

𝑧1
𝑡1
+

𝛽𝑡2
𝛼𝑡1 + β𝑡2

𝑧2
𝑡2

Let 𝛼′ =
𝛼𝑡1

𝛼𝑡1 + β𝑡2
, 𝛽′ =

𝛽𝑡2
𝛼𝑡1 + β𝑡2

(Note that 𝛼′ + 𝛽′ = 1, 𝛼′, 𝛽′ ≥ 0),

we have
𝑧3
𝑡3

= 𝛼′
𝑧1
𝑡1
+ 𝛽′

𝑧2
𝑡2

∈ 𝑆5

Therefore, by definition 𝑆5 is convex.

We have 



2. Convex Set: Terms and Definitions

17

Definitions: I. Affine Set, II. Cone, and III. Convex Hull

Given 𝑢1, 𝑢2, ⋯ , 𝑢𝑘 ∈ 𝑅𝑛,

function 𝑓 𝑢, 𝜃 = 𝜃1𝑢1 + 𝜃2𝑢2 +⋯+ 𝜃𝑘𝑢𝑘
and two conditions 1. 𝜃1+𝜃2 +⋯+ 𝜃𝑘 = 1

2. 𝜃𝑖≥ 0 ∀𝑖

I. f u, θ condition 1}: Affine set
II. f u, θ condition 2}: Cone
III. f u, θ conditions 1 and 2}: Convex hull

𝐸𝑥1: 𝜃1𝑢1 + 𝜃2𝑢2 = 𝑢1 + 𝜃2(𝑢2 − 𝑢1)

𝐸𝑥2: 𝜃1𝑢1 + 𝜃2𝑢2 + 𝜃3𝑢3
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Hyperplane 𝑥 𝑎𝑇𝑥 = 𝑏}, 𝑎 ∈ 𝑅𝑛, 𝑏 ∈ 𝑅

or 𝑥 𝑎𝑇(𝑥 − 𝑥0) = 0}, for any 𝑥0 ∈ 𝑅𝑛, 𝑎 ∈ 𝑅𝑛, 𝑏 ∈ 𝑅

Half Space 𝑥 𝑎𝑇𝑥 ≤ 𝑏} 𝑎 ∈ 𝑅𝑛, 𝑏 ∈ 𝑅

or 𝑥 𝑎𝑇(𝑥 − 𝑥0) ≤ 0}

𝐸𝑥: 𝑥 𝑥1 + 𝑥2 = 1} 𝑜𝑟 𝑥 [1,1]
𝑥1
𝑥2

−
0.5
0.5

= 0}

or 𝑥 𝑎𝑇 𝑥 − 𝑥0 = 0}, 𝑎𝑇= [1,1], 𝑏 = 1, 𝑥0 = [2,−1]

For many applications,we standardize the expression:

normalize the expression:
𝑎𝑇

𝑎 2
𝑥= 

𝑏

𝑎 2

2. Sets and Definitions: VI. Hyperplanes and Half Spaces



Ex : 3 variables

𝑥|𝑎𝑇𝑥 = 𝑏 , 𝑎𝑇 = 1,1,1 , 𝑏 = 6

Ex : 4 variables 

𝑥|𝑎𝑇𝑥 = 𝑏 , 𝑎𝑇 = 1,1,1,1 , 𝑏 = 6

(1) degrees of freedom : 𝑛 − 1 𝑅𝑛 .

(2) all vectors (𝑥 − 𝑦) are orthogonal to direction 𝑎, i.e.    

𝑎𝑇 𝑥 − 𝑦 = 0, ∀𝑥, 𝑦 in the hyperplane

Proof:

Exercise: Conceptually (visually) construct hyperplane.

2. Sets and Definitions: Hyperplanes
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Hyperplane : as an Equal potential of cost function

min𝑓0 𝑥 = 𝑐𝑇𝑥

𝑒. 𝑔. 1, 2
𝑥1
𝑥2

𝜕𝑓0 𝑥

𝜕𝑥1
= 1

𝜕𝑓0 𝑥

𝜕𝑥2
= 2

Vector 𝑐 is the sensitivity or cost of vector
𝑥1
𝑥2

2. Sets and Definitions: Hyperplanes

20



Hyperplane : as a linearized constraint

𝑎𝑇𝑥 ≤ 𝑏, 𝑥 ∈ 𝑅𝑛

𝑒. 𝑔. 1, 2
𝑥1
𝑥2

≤ 10

Remark : 

• Hyperplane is one key building block of convex optimization. 

(theory, algorithms, applications for machine learning, deep 

learning, …)

• Each hyperplane separates the space into two half spaces.

• If 𝑛 ≥ 𝑝, 𝑝 hyperplanes can separate the space into 2𝑝

disjoint regions.

2. Sets and Definitions

21



Ⅴ. Polyhedra (plural) : Poly (many) Hedron (face)

𝑃 = 𝑥 𝐴𝑥 ≤ 𝑏, 𝐶𝑥 = 𝑑}

𝐴 =

𝑎1
𝑇

𝑎2
𝑇

…
𝑎𝑚
𝑇

C =

𝑐1
𝑇

𝑐2
𝑇

…
𝑐𝑝
𝑇

2. Sets and Definitions

22



ⅤI. Matrix Space : Positive Semidefinite Cone

①𝑆𝑛 = 𝑋 ∈ 𝑅𝑛⨉𝑛 𝑋 = 𝑋𝑇} Symmetric Matrix

②𝑆+
𝑛 = 𝑋 ∈ 𝑆𝑛 𝑋 ⪰ 0} 𝑖. 𝑒. 𝑦𝑇𝑋𝑦 ≥ 0, ∀𝑦

𝑆++
𝑛 = 𝑋 ∈ 𝑆𝑛 𝑋 ≻ 0} 𝑖. 𝑒. 𝑦𝑇𝑋𝑦 > 0, ∀𝑦 ≠ 0

Ex: 𝑋 =
𝑥 𝑦
𝑦 𝑧 ∈ 𝑆+

2 ⇔ 𝑥 ≥ 0, 𝑧 ≥ 0, 𝑥𝑧 ≥ 𝑦2

[𝑎 𝑏]𝑋
𝑎
𝑏

= 𝑎2𝑥 + 𝑏2𝑧 + 2𝑎𝑏𝑦 ≥ 0, ∀𝑎, 𝑏 ∈ ℝ

2. Sets and Definitions

23



Ex: 𝑋 =
𝑥 𝑦
𝑦 𝑧 ∈ 𝑆+

2 ⇔ 𝑥 ≥ 0, 𝑧 ≥ 0, 𝑥𝑧 ≥ 𝑦2

[𝑎 𝑏]𝑋
𝑎
𝑏

= 𝑎2𝑥 + 𝑏2𝑧 + 2𝑎𝑏𝑦 ≥ 0, ∀𝑎, 𝑏 ∈ ℝ

Proof : Let 𝑅 = 1 −𝑥−1𝑦
0 1

We have 𝑎 𝑏 𝑋
𝑎
𝑏

= [𝑎 𝑏]𝑅−𝑇𝑅𝑇𝑋𝑅𝑅−1
𝑎
𝑏

= 𝑎 𝑏 𝑅−𝑇
𝑥 0
0 𝑧 − 𝑥−1𝑦2

𝑅−1
𝑎
𝑏

1 0
−𝑥−1𝑦 1

𝑥 𝑦
𝑦 𝑧

1 −𝑥−1𝑦
0 1

=
𝑥 0
0 𝑧 − 𝑥−1𝑦2

2. Sets and Definitions

24



𝑥 𝑎𝑇𝑥 = 𝑏} (Classification, Optimization, Duality)

Theorem : Given two convex sets 𝐶 ∩ 𝐷 = ∅ in 𝑅𝑛

∃𝑎 ∈ 𝑅𝑛, 𝑏 ∈ 𝑅, 𝑠. 𝑡. 𝑎𝑇𝑥 ≤ 𝑏, ∀𝑥 ∈ 𝐶

𝑎𝑇𝑥 ≥ 𝑏, ∀𝑥 ∈ 𝐷

Actually, 𝑎 = 𝑑 − 𝑐, 𝑏 =
𝑑 2

2− 𝑐 2
2

2

i.e. 𝑓 𝑥 = 𝑎𝑇𝑥 − 𝑏 = 𝑑 − 𝑐 𝑇(𝑥 −
𝑑+𝑐

2
)

For 𝑑𝑖𝑠𝑡 𝐶, 𝐷 = inf 𝑢 − 𝑣 2 𝑢 ∈ 𝐶, 𝑣 ∈ 𝐷}

3. Separating Hyperplane 
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Proof : ∀𝑣 ∈ 𝐷, 𝑎𝑇𝑣 ≥ 𝑎𝑇𝑑 should be true

By contradiction, suppose that 𝑎𝑇𝑣 < 𝑎𝑇𝑑

Then we can show that 𝑑 + 𝑡(𝑣 − 𝑑) is close to 𝑐 for 𝑡 > 0

Because 
𝑑

𝑑𝑡
𝑑 + 𝑡 𝑣 − 𝑑 − 𝑐 2

2 = 2 𝑑 − 𝑐 𝑇 𝑣 − 𝑑 < 0

We have 𝑑 + 𝑡 𝑣 − 𝑑 − 𝑐 2 < 𝑑 − 𝑐 2 for tiny 𝑡 > 0

3. Separating Hyperplane 
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Given set 𝐶 ∈ 𝑅𝑛, and a point 𝑥0 on the boundary of 

𝐶, the hyperplan 𝑥 𝑎𝑇𝑥 = 𝑎𝑇𝑥0} is called supporting 

hyperplane of C if 𝑎𝑇𝑥 ≤ 𝑎𝑇𝑥0, ∀𝑥 ∈ 𝐶.

Supporting Hyperplane Theorem: For any nonempty 

convex set 𝐶, and a point 𝑥0 on the boundary of 𝐶,

There exists a support hyperplane to 𝐶 at 𝑥0.

Proof: A separating hyperplane that separates interior 𝐶

and {𝑥0} is a supporting hyperplane.

3. Supporting Hyperplane 

27



Given Cone 𝐾 (i.e. 𝐾 = {σ𝑖=1
𝑘 𝜃𝑖𝑢𝑖 |𝜃𝑖 > 0, 𝑢𝑖 ∈ 𝑅𝑛, ∀𝑖})

𝐾∗ = 𝑦 𝑥𝑇𝑦 ≥ 0, ∀𝑥 ∈ 𝐾}

Ex: 1. 𝐾 = 𝑅+
𝑛 ∶ 𝐾∗ = 𝑅+

𝑛

2. 𝐾 = 𝑆+
𝑛 ∶ 𝐾∗ = 𝑆+

𝑛

3. 𝐾 = 𝑥, 𝑡 𝑥 2 ≤ 𝑡 ∶ 𝐾∗ = {(𝑥, 𝑡)| 𝑥 2 ≤ 𝑡}

4. 𝐾 = 𝑥, 𝑡 𝑥 1 ≤ 𝑡 ∶ 𝐾∗ = {(𝑥, 𝑡)| 𝑥 ∞ ≤ 𝑡}

4. Dual Cones

28



Show that cone 𝐾 = 𝑥, 𝑡 𝑥 1 ≤ 𝑡 has its dual

𝐾∗ = 𝑥, 𝑡 𝑥 ∞ ≤ 𝑡

Proof : 

Statement 𝑥𝑇𝑢 + 𝑡𝑣 ≥ 0, ∀ 𝑥 1 ≤ 𝑡 ↔ 𝑢 ∞ ≤ 𝑣

L=>R    By contradiction, suppose that 𝑢 ∞ > 𝑣

We can find ∃𝑥 𝑠. 𝑡 𝑥 1 ≤ 1, 𝑥𝑇𝑢 > 𝑣

Setting t=1, then we have 𝑢𝑇 −𝑥 + 𝑣 < 0.

R=>L    Given 𝑥 1 ≤ 𝑡, 𝑢 ∞ ≤ 𝑣

𝑢𝑇 −𝑥/𝑡 1 ≤ 𝑢 ∞ ≤ 𝑣

Thus, 𝑢𝑇 −𝑥 ≤ 𝑣𝑡

29

4. Dual Cones



Definition: 𝑥 ≤𝐾 𝑦 if 𝑦 − 𝑥 ∈ 𝐾

Theorem: 𝑥 ≤𝐾 𝑦 iff 𝜆𝑇𝑥 ≤ 𝜆𝑇𝑦, ∀𝜆 ∈ 𝐾∗

Examples

30

4. Dual Cones



The polyhedral cone 𝑉 = {𝑥|𝐴𝑥 ≥0} has its dual cone

𝑉∗ = {𝐴𝑇𝑣|𝑣 ≥ 0}

Proof : By definition

𝑉∗ = {𝑦|𝑥𝑇𝑦 ≥ 0, ∀𝑥 ∈ 𝑉}

Thus 𝑉∗ = {𝑦|𝑥𝑇𝑦 ≥ 0, ∀𝐴𝑥 ≥ 0}

Let 𝑦 = 𝐴𝑇𝑣, we have 𝑥𝑇𝑦 = 𝑥𝑇𝐴𝑇𝑣 > 0 if 𝑣 ≥ 0

Ex: 𝐴 =
1 2
1 −1

i.e. 𝑥1 + 2𝑥2 ≥ 0, 𝑥1 − 𝑥2 ≥ 0

𝐴𝑇 =
1 1
2 −1

i.e. {𝜃1
1
2
+ 𝜃2

1
−1

|𝜃1, 𝜃2 ≥ 0}

31

4. Dual Cones



Remark: 𝑥0 + ∆𝑥 ∆𝑥 ∈ 𝐾

(1) 𝐾 cone can be translated to 𝑥0

(2) If 𝑎 ∈ 𝐾∗, then 𝑎𝑇𝑥 ≥ 0, ∀𝑥 ∈ 𝐾, i.e. −𝑎𝑥 is a supporting 

hyperplane of cone 𝐾

(3) Suppose that the current feasible search region is at corner 𝑥0

and 𝑥0 + ∆𝑥 ∆𝑥 ∈ 𝐾, ||∆𝑥|| < 𝑟 is a local feasible region of 

a convex set

If  𝛻𝑓0 𝑥0 ∈ 𝐾∗, i.e. 𝛻𝑓0 𝑥0
𝑇∆𝑥 ≥ 0, ∀∆𝑥 ∈ 𝐾,

Then 𝑥0 is an optimal solution
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