CSE203B Convex Optimization

CK Cheng Dept. of Computer Science and Engineering University of California, San Diego

Outlines

- Staff
 - Instructor and TAs
- Logistics
 - Websites, Textbooks, References, Grading Policy
- Optimization Classification
 - -History and Category
- Scope
 - -Coverage

Staff

- Instructor
 - CK Cheng, ckcheng+203B@ucsd.edu
- TAs, Office hours: TBA (Piazza)
 - Holtz, Chester, chholtz@ucsd.edu,
 - Liu, Isabella, lal005@ucsd.edu
 - Nagola, Ethan, enagola@ucsd.edu
 - Paksoy, Oguz, opaksoy@ucsd.edu
 - Ravindrakumar, Vaishakh, varavind@ucsd.edu
 - Song, Meng, mes050@ucsd.edu

Information about the Instructor

- Instructor: CK Cheng
- Education: Ph.D. in EECS UC Berkeley
- Industrial Experiences: Engineer of AMD, Mentor Graphics, Bellcore; Consultant for technology companies
- Research: Computer-Aided Design/Design Automation: VLSI Layout, Simulation, Brain Computer Interface (e.g. chip layout technology optimization, graph visualization, quantum mechanic simulation, mouth intake sensing)
- Email: <u>ckcheng+203B@ucsd.edu</u>, Office: Room CSE2130
- Office hour will be posted on the course website
- Websites
 - http://cseweb.ucsd.edu/~kuan
 - <u>http://cseweb.ucsd.edu/classes/wi22/cse203B</u>-a

Logistics: Class Schedule and Links

Class Lectures: 12:30-1:50 PM TTH, Centr 101 Discussion Sessions: 9:00-9:50 PM F Centr 101 Class website: Slides and announcements http://cseweb.ucsd.edu/classes/wi22/cse203B-a Piazza: Q&A platform http://piazza.com/eng.ucsd/winter2022/cse203bwinter2022, or https://piazza.com/class/kx85xrdgigl5m5. Gradescope: Submissions of HWs, Exams, Projects UCSD Podcast: Records of lectures and discussion sessions For access of the links, check with TA: Chester Holtz, chholtz@ucsd.edu

Logistics: Grading

Homeworks (50%)

- Exercises (Grade by completion)
- Assignments (Grade by content)

Project (25%)

- Theory or applications of convex optimization
- Survey of the state of the art approaches
- Outlines and references (Due 1/28/2022, W4)
- Report (Due 2:30PM Tuesday 3/15/2022, W11)
 Exams (25%)
- Take-home exam 48 hours
- Midterm, 2/20-21/2022, (W7-8)

Logistics: Grading/Expectation

Homeworks

- Discussion is permitted (only for this class)
- Write the solution by oneself

Project

- A team of 4 or less members but no more than 4
- Teamwork is encouraged because of the scope and timeframe of the project
- Use piazza in need of team members

Exams

• Open book and internet search is allowed but no help from anyone else

Logistics: Grading/Expectation

- Level 1: Definitions and proofs (slides, taking notes in classes)
- Level 2: Examples and applications (hws)
- Level 3: New formulations and usage (project, exam)
- Level 4: Open problems (exam)

Logistics: Textbooks

Required textbook:

- Convex Optimization, Stephen Boyd and Lieven Vandenberghe, Cambridge, 2004
- Review appendix A in the first week

References

- Numerical Recipes: The Art of Scientific Computing, Third Edition, W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, Cambridge University Press, 2007.
- Matrix Computations, 4th Edition, G.H. Golub and C.F. Van Loan, Johns Hopkins, 2013.
- CMU Convex Optimization by R. Tibshirani, http://www.stat.cmu.edu/~ryantibs/convexopt/
- EE364a: Convex Optimization, http://stanford.edu/class/ee364a/

Classification: Brief history of convex optimization

Theory (convex analysis): 1900–1970 **Algorithms**

- 1947: simplex algorithm for linear programming (Dantzig)
- 1970s: ellipsoid method and other subgradient methods
- 1980s & 90s: polynomial-time interior-point methods for convex optimization (Karmarkar 1984, Nesterov & Nemirovski 1994)
- 2000+: many methods for large-scale convex optimization **Applications**
- before 1990: mostly in operations research, a few in engineering
- 1990+: many applications in engineering (control, signal processing, communications, circuit design, . . .)
- 2000+: machine learning and statistics

Optimization Classification

Tradition	Linear Programming	Nonlinear Programming	Discrete Integer Programming
	Simplex	Lagrange multiplier	Trial and error
	Primal/Dual	Gradient descent	Cutting plane
This along	Interior point method	Newton's iteration	Relaxation

This class

Convex Optimization	Nonconvex, Discrete Problems	
Primal/Dual, Lagrange multiplier	Local Optimal Solution Search, SA (Simulated Annealing), ILP (Integer Linear Programming), MLP (Mixed Integer Programming),	
Gradient descent		
Newton's iteration		
Interior point method	SAT (Satisfiability), SMT (Satisfiability Modulo Theories), etc.	

Scope of Convex Optimization

For a convex problem, a local optimal solution is also a global optimum solution.

Scope

Problem Statement (Key word: convexity)

- Convex Sets (Ch2)
- Convex Functions (Ch3)
- Formulations (Ch4)

Tools (Key word: transform mechanism)

- Duality (Ch5)
- Optimal Conditions (Ch5)

Applications (Ch6,7,8) (Key words: complexity, optimality)

Coverage depends upon class schedule

Algorithms (Key words: **Taylor's expansion**)

- Unconstrained (Ch9)
- Equality constraints (Ch10)
- Interior method (Ch11)

Scope

CSE203B Convex Optimization

• Optimization of a convex function <u>with constraints</u> which form convex domains.

Background

- Linear algebra
- Polynomial and fractional expressions
- Log and exponential functions
- Optimality of continuously differentiable functions

Concepts and Techniques to Master in CSE203B

- Convexity
- Hyperplane
- Duality
- KKT optimality conditions