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Abstract

The COVID-19 pandemic has resulted in millions
of deaths around the world and various effective
vaccines are being developed and manufactured
throughout the world. But given that the produc-
tion of vaccines is still catching up with the de-
mand, it is imperative to optimize the distribu-
tion to the general public to effectively check the
spread of COVID. In this work, we aim to use
convex optimization to realize the maximum im-
pact of administering the vaccines. We formulate
this as an optimization problem where we find
a subset of people who if given the vaccine will
minimize the transmission of the virus. Since not
everyone is at equal fatality risk from COVID, we
also factor in the vulnerability of various groups
of people. We constructed multiple distinct sim-
ulations to test our formulation, and experiment
with different social situations to identify which
individuals to administer vaccines, given a lim-
ited amount. Our findings show that in situations
where the vulnerability of all individuals is equal,
the vaccine should be prioritized to that group of
people who interact with maximum number of
people such as grocery store employees, teachers
etc. When we factor in the the vulnerability of
people, then most vulnerable should be given the
vaccine first.

1 Introduction

COVID-19 has infected over 121 million people
and claimed the lives of over 2.67 million people in
the past year across the globe (who). Fortunately,
clinical research has finally developed effective
vaccines. Back in November of 2019, the prelim-
inary efficacy results for their COVID-19 vaccine
reported by Pfizer/BioNTechand Moderna was at
least 90%. Oxford and AstraZeneca group also con-
firmed the safety of their vaccines across variety of
groups (Ramasamy et al., 2020).

Currently, these vaccines are administered in a
phase based strategy in that Phase 1A includes the
front line workers, Phase 1B includes people over
65 years of age. Phase 1C includes people who
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are have high-risk medical conditions so and so
forth (pha). In this work we want to verify that
this strategy is indeed a good strategy not only in
terms of saving individual lives which, of course, is
paramount but also is able to curb the community
transmission of the virus which is also vital.

There has been some evidence that fully vac-
cinated people are less likely to spread COVID,
further investigation is still under progress (cdc).
In this work, we are working under the assumption
that fully vaccinated people are far less likely to
spread the COVID. We want to find a subset of
people who if given the vaccine will minimize the
spread of COVID. In terms of strategy, this is more
of a community level strategy than an individual-
level strategy. Even though our results agree with
the current strategy to fully vaccinate people who
have higher exposure and to people over the age of
65 and with serious medical conditions, our method
is able to provide a more granular subset of people
who should be vaccinated first instead of blanket
groups which we believe will result in better pre-
vention of the transmission of COVID.

We plan to use an exposure graph where every
person is a node and the edges between two nodes
represent if they are exposed to each other or not.
In May’20, Apple and Google partnered to build
an exposure notification system which was able
to track the nearby devices and notify people if
they have been exposed to COVID (Team, 2020).
By simple modifications to this system, we can
build the exposure graph and subsequently find out
the subset of nodes/people who should be adminis-
tered the vaccine in order to minimize the spread
of COVID. Since this information is not available
to general public, we are currently working with
simulated graphs which shows the efficacy of our
method.

In the next section, we look at some previous
works that are relevant to figuring out how to effec-
tively distributing COVID-19 vaccines and various



strategies for selecting significant nodes in a net-
work. In section 3, we formulate the primal and
dual problems, Karush—Kuhn-Tucker conditions.
In section 4, we further discuss the two methods
used in this paper based on the formulations in sec-
tion 3. In section 5, we introduce the graphs and
why they are relevant for our experiments. In sec-
tion 6, we show the results of our two methods on
the graphs introduced in section 5. In the final sec-
tion, we have conclusions and the future directions
of work.

2 Related Work

Since the beginning of the COVID-19 pandemic,
various works were done to to keep the spread
under control and prevent any potential outbreak
in the future. (Guo et al., 2020) showed a effective
method to control epidemics spread by analyzing
a complex social network and using information
entropy to identify influential nodes which plays a
crucial part in target advertisement, epidemics and
rumor control.

(Santini, 2020) addressed the lack of resource
and propose a strategy on how to overcome this by
performing real time simulation of a social network
consisting of older and younger people. In their
work, they experiment with two approaches, greed-
ily providing vaccines to the nodes with the most
neighbors (highest degree) and administering vac-
cines to young people with the most connections
to the elders, who are more vulnerable. The paper
suggests that the most effective strategy is to give
priority to those who are more heavily connected
to the vulnerable people(caregivers, cleaning per-
sonnel, etc). But when taking distribution of vac-
cines over time into account, the optimal strategy
switches to prioritizing a fraction of elderly and
then giving it to young people as the number of
victims increases.

Similarly, (Cheng et al., 2021) also performed a
similar experiment on similar model and concluded
that high-risk individuals should be given priority.
However, there are still many assumptions and fac-
tors to consider in their paper as well as (Santini,
2020). Most importantly, a crucial component that
is missing in these two paper is the mechanism
to decide who exactly out of those people in each
group should be selected to receive the vaccine
assuming that we know which group should be
prioritized and how many out of each group are
eligible.

Identifying influential nodes in a network is not a
novel research topic. (Zhang and Zhang, 2020) also
published a paper that proposed a modified greedy
algorithm as a way to select the top-k most influ-
ential nodes in a given graph (Zhang and Zhang,
2020). (Elkin et al., 2013) on the other hand, used
convex relaxation to identify those nodes. Even
though their work focuses solely on social network,
the use of convex optimization in their work pro-
vide great insights for figuring out an optimized
way of allocating the limited COVID-19 vaccines
for a given community. As a result, this paper uses
the optimization problem used it their paper as a ref-
erence point. With convex optimization, we could
easily add or remove linear constraints or modify
the objective function to solve other problems re-
lated to resource allocation to maximize effect to
the entire networks given the limitation.

Before selecting a set of people from a given
community, it may be beneficial to be able to iden-
tify the sub-communities in a bigger network of
people. The work of (Voss et al., 2016) on spectral
clustering may also be incorporated to our current
work to further improve the quality of vaccine dis-
tribution. In their paper, they proposed an algo-
rithm to cluster nodes in a given graph. This can
be useful in a bigger graph since this algorithm
attempts to divide the entire graph into smaller
community which allows us to allocate our limited
resource more efficiently.

Given previous works on strategies for COVID-
19 vaccines distribution as well as methodologies
for selecting influential nodes in a graph, our main
contribution of this paper to these ongoing re-
searches is to figure out exactly who among the
people in the community should be vaccinated.
This is done by introducing some new key ideas
such as taking into account the number of hops
between nodes rather than the reachability between
two nodes, considering the vulnerability of each
individual, clustering nodes into sub-communities
before nodes selection, and experimenting on more
realistic models that resemble real life scenarios
(grocery stores, nursing homes, schools, and the
combination of all three).

3 Formulation

We have an undirected graph GG consisting of ver-
tices V and edges E where each node is corre-
sponding to a person and there is an edge between
two nodes if they come in frequent contact. We



are also given a diagonal vulnerability matrix, C,
where C; denotes how likely is person ¢ likely to
contract COVID. We also know the total available
doses of the vaccines denoted by k. Under this
setting, we wish to find a subset V* of V' such that
|V*| = k such that this minimizes the distance be-
tween the subset of nodes given the vaccine and
the remaining nodes.

We create R € RIVIXIVI where r;; denotes the
minimum number of hops required to reach node j
from node <. If node j is not reachable from node ¢
then R;; is oo.

3.1 Primal

Let z € R!VI be the solution vector such that if
v; € V*then z; = 1 else z; = 0. Let t € RIVI such
that ¢; = 1 if v; is reachable from at least one node
in V* and t; = 0 otherwise. Let e € RIVI where €;
=1 for all i.

Now, for discrete values of x, the problem is
NP-hard (Elkin et al., 2013). Therefore, follow-
ing (Elkin et al., 2013) we relax the problem to
continuous values of x.

The primal formulation of the stated optimiza-
tion thus becomes:

mitn S er:
Z,

such that
t < RTy

elo =k
0<z<e

Here we are minimizing the sum of the total
cost which is computed using RT C'x for all nodes.
Currently, we are not using ¢ because we are as-
suming that the entire graph is reachable. In case
we have disconnected components we can add ¢ to
the objective.

In the first constraint, ¢ which should be less
than RTx is the distance of all the nodes from
the selected set. If a node is not reachable from
the selected set then ¢t = 0. Condition e’z = k
ensures that we have utmost k nodes in the selected
set. And the final constraint is the relaxation on the
values of x.

3.2 Dual
We define the Lagrangian associated with the pri-
mal form as:
L(z,t,\,v) = el RTCz + \'(t — RTx)
ATt —e)+ M (z—e)

Mz4+vs(elz—k)
Next, we define the Lagrange dual function as:

g\ v) = intf L(x,t,\,v)

When we solve the dual function we get the
following dual formulation of the above problem
is as follows:

minel \ + vk

N4

such that
A>0
e"RTC + 2T +vel >0
R and C are defined in Section 3.1

3.3 KKT conditions

Let (z*,t*) and (A\*,v*) be any of the optimal
points of the primal and dual problems. Then the
first-order KKT conditions that lead of zero duality
gap are as follows:

AN (z*—e)=0
CTRe4+ A A4+vxe=0

4 Methodology

We tried two different approaches(both using the
formulation described in the previous section but
differently) for finding the most important nodes
(to give vaccines to) given a graph. These are as
follows:



4.1 Method 1

In this method, given graph GG and the number of
vaccines to administer k, we directly apply primal
objective as introduced in section 3.1. As stated in
the previous section, we need to construct R (mea-
sure of number of hops required to reach a vertex
from another) from the given graph G. If we have
the additional data of vulnerabilities of people in
form of C' as described in the previous section, this
method can take that into account while calculating
the important nodes. If we don’t have the vulner-
ability data, we can just treat C' to be an identity
matrix (implying everyone has same vulnerability).
This primal objective is then a convex optimization
problem (as all the constraints, inequalities and op-
timization function is convex) and can be solved
via DCP solver. We used cvxpy library of python
to solve it.

4.2 Method 2

As an alternative to previous method, we also tried
an approach that uses the combination of the pop-
ular spectral clustering method (Shen, 2021) and
the formulation we introduced in Section 3. In this
method, given graph GG and the number of vaccines
to administer k, we first find k clusters. Cluster-
ing is performed using spectral clustering (Shen,
2021) on the adjacency matrix of the given graph.
Once we have found k clusters, we then use our
primal objective(Section 3.1) with £k = 1 within
each cluster to find the most influential node within
that cluster. There are several issues that this ap-
proach suffers from in comparison to our approach.
Since spectral clustering uses k-means as one of the
steps, there is some randomization involved with
initialization. Thus, there is no globally optimal
clustering and each run of the algorithm may give
different results. Another shortcoming is its inabil-
ity to incorporate vulnerability data prior to cluster-
ing to find better clusters. With this approach, we
can include vulnerability only after the clustering
is done and we need to find a single most important
node.

We test both of the above methods on different
kinds of real life relevant graphs which are intro-
duced in next section.

5 Experiments

During our experimentation using the primal form
of the problem, we identified three distinct commu-
nity models representative of specific real-world

situations. In addition to these experiments, we
analyzed the results of the algorithm on various ran-
dom graphs simulating interactions between people.
When the vulnerability is not mentioned, it is as-
sumed that all nodes have equal vulnerability (the
diagonal of C'is all 1’s). We show results for both
the approaches(Section 3.1 & Section 3.4) on three
distinct community models.

5.1 Grocery Store

The grocery store example is an important simula-
tion, due to its vital role no matter the severity of
the virus. Let n be the number of employees, and
m be the total number of customers. The grocery
store can be visualized as a number of “aisles”,
each belonging to an employee. Each of the n
employees is connected to the employees in the
neighboring aisles, and to a random fraction of the
m customers. We also include a probability of in-
teraction, p, which determines the probability of
interaction between customers within each aisle,
where O results in no interactions, and 1 results in
a guaranteed interaction for each customer with
another customer. This model can be expanded
to similar situations, like indoor/outdoor dining or
retail.

Figure 1: A grocery store simulation with 5 employ-
ees (Green) and a total of 100 customers (Blue) with a
probability of interaction of 0.2

5.2 Nursing Home

The nursing home simulation looks at how a fully
connected community, with a certain number of
people with connections to other communities, can
impact vaccine distribution. Specifically, we know
that during the pandemic, nursing homes have been



closed off to visitors, so this model attempts to an-
alyze how the connections of employees affect the
network. Let n be the number of employees at the
nursing home, m be the number of residents at the
nursing home, and g be the number of people in
the outside community, randomly distributed for
each employee. The graph is constructed by cre-
ating a fully connected graph with the employees
and residents, and connecting each employee to a
random graph with g nodes (this subgraph is not
necessarily fully connected). The resulting graph
is similar to another important simulation of gath-
erings, where the members of the gathering form a
fully connected network, but also have connections
to communities outside of the gathering.

Figure 2: A nursing home simulation with 5 employees
(Green), 35 residents (inner component), and 100 peo-
ple randomly distributed among the outside communi-
ties (outer components)

5.3 School

As school reopenings become increasingly com-
mon around the U.S., the analysis of vaccine dis-
tribution among this community is vital. We con-
structed a school model to identify how vaccines
can be effectively distributed among school pop-
ulations. Let n be the number of teachers, m be
the size of each class, and f be the size of each
family. The constructed graph is a fully connected
subgraph with n nodes representing the teachers,
where each node is connected to a fully connected
subgraph with m nodes, representing a class of
students. Each student is connected to a fully con-
nected subgraph with f nodes, representing a fam-

ily.

Figure 3: A school simulation with 3 teachers (Green),
a class size of 6 (Orange), and a family size of 5 (Blue)

5.4 Community

Utilizing the three developed models simulating
different critical aspects of society w.r.t. vaccine
distribution, we built a community model. The sim-
ulation consists of grocery stores, nursing homes,
and schools all interconnected as applicable. For
example, nursing home employee nodes have con-
nections to students and families within the school
model, and employees at the grocery store. Ad-
ditionally, the "unnamed” nodes, such as those
connected to the employees at the grocery store
are randomly connected with each other, creating a
large network of interconnectivity.

W

Figure 4: A community model consisting of 1 school,
3 grocery stores, and 2 nursing homes

6 Results

After developing our models, we ran the algorithm
on each graph with different parameters and vulner-



ability distributions to identify the optimal vaccine
administration.

6.1 Grocery Store

Analyzing the results of the algorithm on the gro-
cery store graph, we observe the following:

e The employees are always given preference
in the case of the number of vaccines being
less than or equal to the number of employees,
even in increasing probabilities of customer
interaction.

o If the probability of customer interaction is
0 and the number of vaccines is more than
the number of employees, then the extra vac-
cines should be distributed to the customers
within the “middle” aisles, rather than cus-
tomers within the “edge” aisles.

e When factoring in the vulnerability in cus-
tomer population, we saw that the algorithm
(based on primal objective) would prefer cus-
tomers who were more vulnerable over em-
ployees, specifically in cases where other cus-
tomers within the same aisle were also vulner-
able.

e We also observe higher preference to vulnera-
ble customers over the edge employees, and
vulnerable customers closer to the center aisle
would be given preference, since these nodes
are closer to the other nodes.

Overall, the results show the importance of vac-
cinating the employees over the customers due to
the large connections not only with the customers
in the corresponding aisle, but as well as the con-
nections to neighboring aisles. Also, vulnerable
people that interact with more people should be
given higher preference as expected.

In the case of spectral clustering, we find similar
results as the original algorithm, where employees
are given preference.

Figure 5: The solution based on method 1 to the gro-
cery store simulation with 5 employees, 100 customers,
and 5 vaccines

Figure 6: The solution based on method 2 approach
to the grocery store simulation with 5 employees, 100
customers, and 5 vaccines

6.2 Nursing Home

For the nursing home scenario, we observe that
results are similar to the grocery store case:

e When the number of vaccines is less than or
equal to the number of employees, the em-
ployees of the nursing home model are always
given preference.

o Interestingly, when the size of outside com-
munities is much lower than the size of the
nursing home, the employees are still given
preference, as any extra contact gives them
preference over the nursing home residents.

e Incorporating vulnerability, which is espe-
cially pertinent for older populations, such as



the elderly residents in nursing homes, we ob-
tain a vaccine administration focused around
them.

o If the vulnerability of the residents of the nurs-
ing home is increased, they are often given the
vaccine over the employees. The cases where
this does not happen are if the outside com-
munities are incredibly large, or if the number
of vulnerable residents is low.

e A point of importance is that even if the vul-
nerability of the outside community is in-
creased drastically and with large frequency,
the residents and employees are given prefer-
ence.

Figure 7: The solution based on method 1 to the nurs-
ing home simulation with 5 employees, 35 residents,
100 outsiders randomly distributed among the employ-
ees, and 5 vaccines

Approaching this model with spectral cluster-
ing, we see that the results are inconsistent with
the results of the original algorithm. Specifically,
we often see preference given to the individuals
forming the connection between the employee and
outside community.

6.3 School

The results for the school scenario are as follows:

e When the vaccines are limited, teachers are
give more importance than students which is
expected as teachers are the link between two
fully connected classrooms.

e Even in extreme cases with family sizes or
class sizes, the teachers are still given prefer-
ence over students and their families.

Figure 8: The solution based on method 2 approach
to the nursing home simulation with 5 employees, 35
residents, 100 outsiders, and 5 vaccines

e The vulnerability of students or families
presents a twist on the results. If the number
of vaccines is limited to less than the number
of teachers, the vaccines will be distributed to
the teachers who have vulnerable students or
to the students with vulnerable family mem-
bers first, before other teachers. Additionally,
in extreme cases of vulnerability, it is possible
for the student to outweigh the teacher.

Figure 9: The solution based on method 1 to the school
simulation with 3 teachers, class size of 6, family size
of 5, and 3 vaccines

Utilizing the alternative approach of spectral
clustering, we find similar conclusions of adminis-
tering the limited vaccines to the teachers.

From the results so far, comparing method 1 and
method 2(as introduced in Section 4), we see that
method 1 approach is more robust as method 2



Figure 10: The solution based on method 2 approach
to the school simulation with 3 teachers, class size of 6,
family size of 5, and 3 vaccines

gives undesirable results on nursing home graph.
We also identified a real life scenario conveying
method 2 being less robust than method 1. The
scenario being if there are two weakly connected
clusters and one cluster being full of highly vul-
nerable people and other cluster being full of very
low vulnerable people. In that case, method 2 will
select one person each from the two groups but
method 1 takes vulnerability into account. Thus,
for the community graph as introduced earlier, we
run the more robust method 1 instead of method 2.

6.4 Community

Altering the various parameters of each model
gives us different results for the community simu-
lation, but the consensus when the number of vac-
cines is limited is to give preference to the nodes
with the strongest influence in the graph, while min-
imizing the distance from the subset to the nodes
not selected. Specifically, teachers and employees
(grocery store and nursing home) were almost al-
ways given preference, except in the case the graph
randomly created other nodes, such as a family
member, with a large number of connections.

For the simulation in 4, we obtain results contain-
ing a majority of high influence nodes (employees,
nurses). For 25 vaccines, we see that the limited
vaccines should be distributed to the following in-
dividuals, as visualized in 11:

H Node ‘ Count H
Teacher 1
Student 6

Family Member 3
Employee 3
Resident 0

Nurse 10
Unnamed 2

The nurses are given the largest preference in
this simulation, with the majority of the remaining
vaccines distributed to students, families, and em-
ployees. The other nodes selected can be attributed
to the random construction of the graph, where-
upon a student or unnamed node may have a high
influence.

Figure 11: The solution based on method 1 to the com-
munity model with 1 school, 3 grocery stores, and 2
nursing homes

When the vulnerability is altered for specific
nodes, we see that the algorithm tends to favor
those in extreme cases, but in general distributes
the vaccine to those with a large influence on the
graph. For the simulation in 4, with the following
vulnerability distribution:

H Node Vulnerability H
Teacher 0.98
Student 1.1

Family Member 0.93

Employee 0.97

Resident 0.93
Nurse 1
Unnamed 1

We obtain the following vaccine distribution for 25
vaccines:



H Node ‘ Count H
Teacher 0
Student 1

Family Member 1
Employee 11
Resident 6
Nurse
Unnamed 1

These greatly different results can be attributed
to the distribution of the vulnerability introduced to
the problem. Specifically, by increasing the vulner-
ability of older populations, such as the residents
and family members, our algorithm gives prefer-
ence to those more vulnerable to the virus, but also
weighs the importance of network influence, as
seen by the number of employees and nurses. A
significant point is also the number of nurses cho-
sen by the algorithm due to their close proximity
to those more vulnerable.

Figure 12: The solution based on method 1 to the com-
munity model with 1 school, 3 grocery stores, and 2
nursing homes. Accounts for vulnerability, with resi-
dents in nursing homes being most vulnerable, and stu-
dents being least vulnerable

7 Conclusion & Future Work

Currently, companies like Google and Apple have
developed and released ways for users to opt-in to
programs tracking COVID exposure using Blue-
tooth signals from nearby phones, which could
produce the data for the algorithm (Gebhart and
Gennie, 2020). Similarly, vulnerability for indi-
viduals can be assessed by people’s health-care
profile. By using this data we have formulated
a convex optimization problem which minimizes
the transmission of COVID. We show results of

experimentation with different simulations and ran-
domized graphs display the importance of effective
distribution to individuals who come into contact
with large numbers of people, even over more vul-
nerable populations. Groups such as grocery store
employees, nursing home workers, and teachers
are examples of people who, when administered
the vaccine, would have the largest reach. This
presents a complementary method which can be
implemented along with the current COVID-19 vac-
cine distribution efforts prioritizing the vulnerable
populations.

The applications of this project are multifold,
and not solely limited to COVID-19, but rather a
wide variety of fields, such as pyramid scheme op-
timization, knowledge distribution, social network
influencers, and resource distribution.

Other future work may include analyzing non-
symmetric vulnerabilities between two nodes. For
example, in our current algorithm, we consider an
interaction between two people to be equal, but in
reality there are various factors that could impact
the effect of the exchange, such as the absence of
a mask for one person. Adding this aspect could
make the algorithm more robust and convert the
algorithm from undirected edges to weighted di-
rected edges. Additionally, we have not taken into
account inherent biases such as people working at
hospitals. Although this could be induced using
the vulnerability, future work in this area could
improve this optimization project.

8 Task Assignments

o Literature Survey - Kunal Jain, Shivam Lakho-
tia, Sothyrak Tee Srey, Rohan Bhushan

e Data ingestion - Kunal Jain, Shivam Lakhotia,
Sothyrak Tee Srey, Rohan Bhushan

e Algorithm implementation - Kunal Jain,
Shivam Lakhotia, Sothyrak Tee Srey, Rohan
Bhushan

e Experiments - Kunal Jain, Shivam Lakhotia,
Sothyrak Tee Srey, Rohan Bhushan

e Report - Kunal Jain, Shivam Lakhotia,
Sothyrak Tee Srey, Rohan Bhushan
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