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1 Introduction

The task of colorizing a grayscale image is both an unconstrained optimization problem over the human comprehension
and an optimization problem over the images with potentially unknown ground truth. On the surface, hallucinating a
plausible colored version of a grayscale image seems daunting, since two of the three dimensions of the image data have
been lost. However, if done accurately and efficiently, such a task can have a wide range of applications in computer
vision and graphics (e.g., object detection and classification in grayscale images). Moreover, it can be used as a powerful
pretext task for self-supervised feature learning (an autoencoder that outputs two color channels given one lightness
channel input).
Related Works: The colorization of grayscale images has been a popular direction for researchers recently thanks
to the development of deep convolution neural networks in computer vision. Instead of directly learning in the RGB
color space, many approaches chose to learn in other color space: Dahl et al. utilizing VGG16 and VGG19 ImageNet
pre-trained layers in the CIELUV color space [1, 2], Deshpande et al. transforms RGB color space to a de-correlated
2-channel normalized opponent color space [3], Zhang et al. implements a multinomial classification CNN network in
the CIE Lab color space [4]. Others have developed instance-aware colorization approaches where the grayscale images
are first passed through an object segmentation network and then a colorization network based on the segmentation
map [5] for more coherent colorization within object instances. These instance-aware approaches have been successfully
applied to image-to-image translation [6, 7].
Intended Contributions: For our project, we build on the CNN network shown in Figure 1 proposed in [4] by
introducing an `2 norm constraint to encourage more vibrant colorful images. We also formulate the primal/dual
problem and KKT conditions of the inherently non-convex optimization problem of the CNN network. To simplify
our formulation, we focused on a single convolution block with two convolution-ReLU layers using gradients of the
convolution layers as abstract functions. Also, we acknowledged the recent advancement in formulating a two-layer
CNN as a convex optimization problem that can be solved in polynomial time [8] and also included the primal/dual/KKT
using its results. From our experiments, the CNN network trained with our loss function can improve the washed-out
results compared to the standard `2 norm loss in [4].
Task Assignment: Ahan Mukhopadhyay and Ulyana Tkachenko work on the mathematical formulation and
deduction of the primal/dual problem and the KKT conditions of a single convolution block. Kyle Lisenbee works
on code implementation and experiments on the Coco 2017 dataset. Kolin Guo works on code implementation,
experiments on the Coco 2017 dataset, and formulates of the primal/dual/KKT using results in [8].
Paper Organization: The statement of the problem with primal/dual/KKT of a single convolution block is formulated
in section [2]. The primal/dual/KKT of a two-layer CNN using results in [8] is formulated in Appendix [A.2-A.4].
The experimental approaches and results compared to the standard `2 norm loss are discussed in sections [3] and [4],
respectively.

2 Statement of the Problem

Given an input lightness channel L ∈ RH×M×1, our objective is to learn a mapping Ŷ = F(L; Θ) with the CNN
network in Figure 1 to the two associated color channels ab of the CIE Lab color space Y ∈ RH×W×2, where H ,
W are image dimensions and Θ is the parameters of the mapping function F(·). We choose the CIE Lab color space
because the distances in this space model perceptual color distances of human vision and direct relation to human color
perception. In the loss functions below, we use subscript h,w to denote the value for the image pixel at location (h,w)
(e.g., Yh,w ∈ R2).
A straightforward objective function, as used in [4, 10], is the Euclidean `2 loss J`2(·, ·) between predicted and
groundtruth ab colors:

J`2(Ŷ,Y) =
1

2

∑
h,w

‖Yh,w − Ŷh,w‖22 (1)
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Figure 1: Our network architecture. Each conv layer refers to a block of 2 or 3 repeated conv and ReLU layers, followed
by a BatchNorm [9] layer. The net has no pool layers. This figure is modified from Fig. 2 of [4] by reducing the
number of conv filters by a half and the input/output images by a half.

However, the Euclidean `2 loss tends produce a desaturated color [4] because the optimal value to the loss function
is the mean of the ab values. Since the ab values both have range [−110, 110], their means would be [0, 0] which
represents a grayish color. To encourage more vibrant color, we incorporate an additional chroma term C and Ĉ from
the CIE Lhc color space [11] into equation [1] to ensure color vividness closer to ground truth. Our proposed loss
function for encouraging color vividness is as follows:

J(Ŷ,Y) =
1

2

∑
h,w

‖Yh,w − Ŷh,w‖22 + γ‖Ch,w − Ĉh,w‖22 + ν‖Θ‖22 (2)

Figure 2: Empirical Probability Distribution in Quantized in-gamut ab color space with a grid size of 10. Most pixels
have ab values around the center [0, 0].
2.1 Primal Formulation of a Single Convolution Block
Using equation [2], we derive our primal formulation in standard form. We can rewrite this formulation with Θ as a
constraint instead of directly in the objective function. These two problems are equivalent because their dual problems
are equivalent [12]. By Lagrangian duality we can use the following formulation as our primal problem:

minimize
1

2

∑
h,w

‖Yh,w − Ŷh,w(L; Θ)‖22 + γ
∑
h,w

(Ch,w − Ĉh,w)2

subject to Ch,w = ‖Yh,w‖2 =
√

(Yh,w)TYh,w, Ĉh,w = ‖Ŷh,w‖2 =

√
(Ŷh,w)T Ŷh,w

‖Θ‖22 ≤ t, γ ≥ 0

2.2 Subgradients of the CNN
We consider a small block of our CNN consisting of two convolution layers with intermediate ReLU layers. For
specifics on how these layers are defined please refer to Appendix [A.5]. To calculate the partial gradients necessary for
getting the dual, we first find the gradient of our proposed loss [2] with respect to the network output.

∂J

∂Ŷ
= Ŷ(1 + 2γ − 2γ‖Y‖2

‖Ŷ‖2
)−Y (3)
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The gradient of the loss with respect to the network weights K1 and K2 is calculated using the chain rule and shown
below with δK1

, δK2
, αK1

, and αK2
representing abstractions in the convolution layer gradients.

∂J

∂K1
= (Ŷ(1 + 2γ − 2γ‖Y‖2

‖Ŷ‖2
)−Y) · sgn(ReLU(θ)) δK1 · sgn(ReLU(h)) · αK1 (4)

∂J

∂K2
= (Ŷ(1 + 2γ − 2γ‖Y‖2

‖Ŷ‖2
)−Y) · sgn(ReLU(θ)) · αK2

(5)

2.3 KKT conditions and Dual Problem of a Single Convolution Block
First we construct the Lagrangian of the objective function J. Note that Θ in [2] is all the network parameters which is
just the combination of K1 and K2 for our CNN block.

Lg(K1,K2, λ1, λ2) =
1

2

∑
h,w

‖Yh,w − Ŷh,w‖22 + γ
∑
h,w

(‖Yh,w‖2 − ‖Ŷh,w‖2)2

+ λ1(−γ) + λ2(‖K1‖2 + ‖K2‖2 − t)
(6)

Assuming the Lagrangian is differentiable, the dual can be derived by solving for optimal values of K1 and K2. These
steps also apply for simplifying the stationary KKT conditions 2.

∇K1Lg(K1,K2, λ1, λ2) =
∂J

∂K1
+ 2λ2K1 = 0, K1 = K∗1

∇K2Lg(K1,K2, λ1, λ2) =
∂J

∂K2
+ 2λ2K2 = 0, K2 = K∗2

Since our problem is non-convex due to the complexity of our CNN network, any K1
∗ and K2

∗ that are primal and
dual optimal with zero duality gap will satisfy the KKT conditions above. However, we cannot claim vice versa: any
K1
∗ and K2

∗ that satisfy the KKT conditions above will be primal and dual optimal with zero duality gap.
The dual problem solution is unconstrained due to the level of abstraction on our CNN gradients.

g∗(λ1, λ2) = max
λ1,λ2

Lg(K∗1,K
∗
2, λ1, λ2)

A more detailed primal/dual/KKT conditions analysis of a two-layer CNN can be found in A.2-A.4 using results in [8]

3 Experimental Approach

The goal of our approach is an optimization method over the colorization of an image such that we maximize the
retention of its likely true colorfulness. Given the nature and complexity of this task, we base our method on the success
of Convolutional neural networks in image orientated tasks.

3.1 Network Architecture
We adapt the overall network structure of [4] with a restructuring of the dimensions at each layer, where each image
input is reduced in dimension by half. To maintain relative complexity, the number of nodes in each network layer
are reduced by one half as well. We retain the networks number of convolution and activation layers to promote the
necessary generalization of pixel-wise relationships across training images. Change of dimension between layers is
through stride, kernel dimensions remain static.
Each network input is the corresponding lightness channel of an image in the LAB colorspace and each output is a
predicted coloring of the a and b channels. As the lightness channel remains fixed, our loss is restricted to two channels.
We treat the weight of the chroma loss over these two channels as a network parameter. Network weights are trained
using Adam over mini-batches.

3.2 Evaluation
To evaluate the success of our model, we utilize the mathematical metrics area under the curve (AuC), rebalanced area
under the curve (RebalancedAuC), peak signal-to-noise ratio (PSNR) and root mean squared error (RMSE).
AuC: We compute the percentage of predicted pixel colors within a thresholded L2 distance of the ground truth in
ab color space. We then sweep across thresholds from 0 to 150 to produce a cumulative mass function, as introduced
in [3], integrate the area under the curve, and normalize.
RebalancedAuC: However, we observed that the raw AuC metric is not representative of the network performance
due to the class imbalance in the ab color space. Therefore, to best evaluate the model’s performance, we re-weights the
pixels inversely by the class probability in ab space shown in Figure 2.

2A full description of KKT conditions for the primal problem can be found in Appendix [A.6]
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MSE: We use two mean squared error measures to evaluate the models from differing perspectives. RMSE gives us
an idea of the models performance on a strict pixel by pixel basis. However, this measure struggles when images lack
sufficient brightness, or when measuring images of different dimensions. To handle this, we use the Peak signal-to-Noise
ratio to better scale the calculated metric over a diverse data set .
While the metrics above help to describe the relative true accuracy between an image and its predicted coloring, they do
not provide an accurate measure of coloring quality. The same measured inaccuracy in a color space can as equally be
caused by a change in color as it can by a lack of colorfulness. Subsequently, our evaluation lacks a strong correlation
between subjective and objective measure. For our purposes, we note the mathematical metrics for comparison, but
focus on perceived quality.

4 Results

Figure 3: Our model trained over 20 epochs on the COCO data set. Left is our input image and right the ground truth
with increasing gamma respective of Table 1.
The evaluation results using the metrics above is summarized in Table 1. Training on the COCO image data set with
over 118,000 images, we find our model increases the subjective colorfulness of the input image with respect to a base
model of L2 in equation [1]. With increasing gamma, the generated images appear to be colorful on average.

Table 1: Evaluation Metrics Results on Coco 2017 Dataset

Model/Metric AuC PSNR RMSE Model/Metric RebalancedAuC
Pretrained 0.892 22.3 0.26
L2,γ = 0 0.91 23.4 24 L2,γ = 0 0.3544
L2,γ = 0.25 0.91 23.5 24
L2,γ = 0.50 0.9 23.2 0.25 L2,γ = 1 0.3967
L2,γ = 1 0.89 22.8 0.23 L2,γ = 2 0.3669
Random 0.23 24.1 0.28

By the results in Table 1, however, we can see the difficulty in quantifying our perception. Change in chroma is not
clearly represented by a positive change across evaluation metrics. We can see this in comparison to the model described
in [4]. While their model outperforms ours in a subjective perception test, our models score better across RMSE and
AuC. All tested models outperformed a random colorization, however.

5 Conclusion

We developed a novel loss function [2] for a feed-forward CNN that ensured visually more vivid image colorization than
comparable Euclidean loss methods. We rewrote this new objective into a standard primal form and derived an abstract
dual formulation for a layer block specific to our CNN model [A.5] and novel loss function. Following, we discussed a
closed form solution to the primal-dual formulation and KKT conditions of the strictly convex Euclidean loss in relation
to our image colorization problem [A.2, A.3, A.4]. Future work to derive a similar closed form analysis specific to our
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novel loss function will provide more insight into the relationship between loss convexity and our added constraint.
Successive research into representing larger CNNs as closed form convex optimization problems is necessary for a
complete reformulation of image colorization as a single convex optimization problem.
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A.1 Notation

Table 2: Notation

Notation Description
L Lightness channel for input image
h,w Pixel coordinates in the input image
Yh,w Ground truth ab channel values
Ŷh,w Predicted ab channel values
Ch,w Ground truth chroma values
Ĉh,w Predicted chroma values
Θ CNN model parameters
γ Weight for chroma L2 term

A.2 Primal Formulation of a two-layer CNN

Here, we assume that our model is a two-layer CNN: inputs are feed into a convolution layer with ReLU activation and
then to a fully-connected layer with output dimensions. Also, since the loss function in equation [2] is non-convex (we
cannot prove its convexity), we will focus on the Euclidean `2 loss function in equation [1] instead.
Notation and preliminaries: We denote the input lightness channel and the corresponding ab channels as L ∈
Rn×din and Y ∈ Rn×dout , where n is the number of training images, din = (Hin ×Win) is the input dimensions
and dout = (Hout ×Wout × 2) is the output dimensions. Moreover, we denote the convolutional patch matrices, i.e.,
subsets of input dimensions, extracted from L as Lk ∈ Rn×h, k ∈ [K], where h denotes the convolution kernel filter
size, [K] is the set of integers from 1 to K and K is the convolution layer output dimensions K = (Hc,Wc). With this
notation, {Lku}Kk=1 denotes a convolution operation between a filter u ∈ Rh and the input data L. In this section, the
ReLU activation function is denoted as (x)+ = max{0, x}.
Using the result in Appendix A.5 of [8], the training problem of equation [1] with network parameters is as follows

p∗ = min
{uj ,{wjk}Kk=1}

m
j=1

1

2

∥∥∥∥∥∥
K∑
k=1

m∑
j=1

(Lkuj)+w>jk −Y

∥∥∥∥∥∥
2

F

+
β

2

m∑
j=1

(
‖uj‖22 +

K∑
k=1

‖wjk‖22

)
,

where ‖ · ‖F is the Frobenius norm, wjk ∈ Rdout is the weights of the fully-connected layer, m is the number of
convolution filters. Using a rescaling (as in Lemma A.1 of [8]) of ūj = γjuj and w̄jk = wjk/γj to the primal problem,
we obtain an equivalent primal formulation as follows

p∗ = min
{uj ,{wjk}Kk=1}

m
j=1

uj∈B2

1

2

∥∥∥∥∥∥
K∑
k=1

m∑
j=1

(Lkuj)+w>jk −Y

∥∥∥∥∥∥
2

F

+ β

m∑
j=1

K∑
k=1

‖wjk‖2, (7)

where B2 := {uj ∈ Ch : ‖uj‖ ≤ 1} is the unit `2 ball.
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A.3 Dual Formulation of a two-layer CNN
The corresponding dual problem of equation [7] is given by

p∗ ≥ d∗ = max
V
−1

2
‖V −Y‖2F +

1

2
‖Y‖2F s.t. max

u∈B2

√√√√ K∑
k=1

‖VT (Lku)+‖22 ≤ β. (8)

The derivation of this dual formulation is similar to Problem 5 on the midterm.

A.4 KKT conditions of a two-layer CNN
The dual formulation in equation [8] is usually a weak dual. However, Theorem 2.1 of [8] shows that strong duality
holds when the number of convolution filters m exceeds a threshold m∗. Due to the time constraint of this project,
instead of deriving the strong duality case for equation [7], we here include the equivalent convex program for a
two-layer CNN with average pooling and scalar output y ∈ Rn and then formulate its KKT conditions.

min
{ci,c

′
i}

Pconv
i=1

ci,c
′
i∈R

h,∀i

f(ci, c
′
i) = min

{ci,c
′
i}

Pconv
i=1

ci,c
′
i∈R

h,∀i

1

2

∥∥∥∥∥
Pconv∑
i=1

K∑
k=1

D(Ski )Lk(c′i − ci)− y

∥∥∥∥∥
2

2

+ β

Pconv∑
i=1

(‖ci‖2 + ‖c′i‖2) (9)

s.t. (2D(Ski )− In)Lkci � 0, (2D(Ski )− In)Lkc
′
i � 0, ∀i, k,

where D(S) ∈ Rn×n is a diagonal mask matrix defined as D(S)ii := 1[i ∈ S], In is the identity matrix of size n, and
Pconv is the cardinality of the convolutional hyperplane arrangements for the patch matrices {Lk}Kk=1.
Introducing Lagrange multipliers λik,λ′ik ∈ Rn for the two inequality constraints, the KKT conditions for equation [9]
is as follows

(In − 2D(Ski ))Lkc
∗
i � 0, (In − 2D(Ski ))Lkc

′∗
i � 0, λ∗ik � 0, λ′∗ik � 0,

λ∗>ik (In − 2D(Ski ))Lkc
∗
i = 0, λ′∗>ik (In − 2D(Ski ))Lkc

′∗
i = 0, ∀i, k

∇ci
f(c∗i , c

′∗
i ) +

Pconv∑
i=1

K∑
k=1

(
(In − 2D(Ski ))Lk

)>
λ∗ik = 0,

∇c′
i
f(c∗i , c

′∗
i ) +

Pconv∑
i=1

K∑
k=1

(
(In − 2D(Ski ))Lk

)>
λ′∗ik = 0,

(10)

where ∇cif(c∗i , c
′∗
i ) and ∇c′

i
f(c∗i , c

′∗
i ) are not expanded out for simplicity. Since our formulation in equation [9] is

convex and finite dimensional (2hPconv variables and 2nPconvK constraints), any points c∗i , c′∗i , λ∗ik, λ′∗ik that satisfy
the KKT conditions in equation [10] are primal and dual optimal, with zero duality gap. The optimal filter weights u∗j
and fully-connected layer weights w∗j can be constructed from c∗i and c′∗i following Theorem 2.1 of [8].

A.5 Computing Gradients of CNN Layer Block
Let us consider a layer block of the CNN that we used:

L = input
z = conv(K1, L)

h = ReLU(z)

θ = conv(K2, h)

x = ReLU(θ)

Ŷ = (â, b̂) = (x)

J = Jloss(Ŷ )

where conv(K,X)i,j =
∑
u,vKi−u,j−v ·Xu,v represents the mathematical operation of a convolution layer. We use

K1 and K2 to represent the weight and bias terms for the respective convolution layers. Following the gradient analysis
steps in [13] we consider the useful network gradients that we would like to compute for our network:

∂J

∂L
,
∂J

∂z
,
∂J

∂h
,
∂J

∂θ
,
∂J

∂Ŷ

Let’s start by finding the derivative of the ReLU function. Considering ReLU(x) = max(x, 0), the derivative of the
ReLU function with respect to x is
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ReLU′(x) =

{
1 if x ≥ 0
0 if otherwise = sgn(ReLU(x))

where sgn(.) is the signum function. Now let’s use chain rule to see the relationship between these gradients

∂J

∂θ
=

∂J

∂Ŷ
∗ ∂Ŷ
∂θ

∂J

∂h
=

∂J

∂θ
∗ ∂θ
∂h

∂J

∂z
=

∂J

∂h
∗ ∂h
∂z

Notice that the ∂Ŷ
∂θ = ReLU’(θ) = sgn(ReLU(θ)) and similarly ∂h

∂z = sgn(ReLU(h)). We also assume the following
gradients:

∂z

∂L
= δK1

∂z

∂K1
= αK1

∂θ

∂h
= δK2

∂θ

∂K2
= αK2

For more details on how to take gradients of two or three layer ReLU convolution networks please refer to [14]. Now,
we will compute ∂J

∂Ŷ
, we start with our objective loss [2] and take the gradient as followed. Note that the partial gradient

with respect to Ŷh′,w′ is 0 at any point h,w ∈ RH×W where h,w 6= h′, w′ and the summation can be removed.

J =
1

2

∑
h,w

‖Yh,w − Ŷh,w(L; Θ)‖22 + γ
∑
h,w

(Ch,w − Ĉh,w)2

=
1

2

∑
h,w

‖Yh,w − Ŷh,w‖22 + γ
∑
h,w

(‖Yh,w‖2 − ‖Ŷh,w‖2)2

∂J

∂Ŷh′,w′
=

∂

∂Ŷh′,w′

1

2

∑
h,w

‖Yh,w − Ŷh,w‖22 + γ
∑
h,w

(‖Yh,w‖2 − ‖Ŷh,w‖2)2


=

∂

∂Ŷh′,w′

[
1

2
‖Yh′,w′ − Ŷh′,w′‖22 + γ(‖Yh′,w′‖2 − ‖Ŷh′,w′‖2)2

]
= (Ŷh′,w′ −Yh′,w′) + 2γ(‖Yh′,w′‖2 − ‖Ŷh′,w′‖2)

∂

∂Ŷh′,w′
[‖Yh′,w′‖2 − ‖Ŷh′,w′‖2]

= Ŷh′,w′ −Yh′,w′ − 2γ(‖Yh′,w′‖2 − ‖Ŷh′,w′‖2)
Ŷh′,w′

‖Ŷh′,w′‖2

= Ŷh′,w′(1 + 2γ)−Yh′,w′ − 2γ‖Yh′,w′‖2Ŷh′,w′

‖Ŷh′,w′‖2

∂J

∂Ŷ
= Ŷ(1 + 2γ − 2γ‖Y‖2

‖Ŷ‖2
)−Y

Now that we have most of the intermediate network gradients, we can substitute them into our chain rule equations.

∂J

∂θ
=

∂J

∂Ŷ
∗ ∂Ŷ
∂θ

= (Ŷ(1 + 2γ − 2γ‖Y‖2
‖Ŷ‖2

)−Y) ∗ sgn(ReLU(θ))

∂J

∂h
=

∂J

∂θ
∗ ∂θ
∂h

= (Ŷ(1 + 2γ − 2γ‖Y‖2
‖Ŷ‖2

)−Y) ∗ sgn(ReLU(θ)) ∗ δK1

∂J

∂z
=

∂J

∂h
∗ ∂h
∂z

= (Ŷ(1 + 2γ − 2γ‖Y‖2
‖Ŷ‖2

)−Y) ∗ sgn(ReLU(θ)) ∗ δK1
∗ sgn(ReLU(h))

Finally, we can compute the gradient of the loss with respect to the network weights K1 and K2.
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∂J

∂K1
=

∂J

∂z
∗ ∂z

∂K1
= (Ŷ(1 + 2γ − 2γ‖Y‖2

‖Ŷ‖2
)−Y) ∗ sgn(ReLU(θ)) ∗ δK1

∗ sgn(ReLU(h)) ∗ αK1

∂J

∂K2
=

∂J

∂θ
∗ ∂θ

∂K2
= (Ŷ(1 + 2γ − 2γ‖Y‖2

‖Ŷ‖2
)−Y) ∗ sgn(ReLU(θ)) ∗ αK2

These are exactly the gradients we need to start deriving the dual problem from our primal problem formulation.

A.6 KKT Conditions for Primal Formulation

1. Stationary Conditions
∇K1Lg(K1,K2, λ1, λ2) = 0

∇K2Lg(K1,K2, λ1, λ2) = 0

2. Complementary Slackness
λ1(−γ) = 0

λ2(‖K1‖2 + ‖K2‖2 − t) = 0

3. Primal Feasibility
−γ ≤ 0

‖K1‖2 + ‖K2‖2 − t ≤ 0

4. Dual Feasibility
λ1 ≥ 0

λ2 ≥ 0
Kernel Gradient Full Formulas

∇K1Lg(K1,K2, λ1, λ2) =
∂J

∂K1
+ 2λ2K1

= (Ŷ(1 + 2γ − 2γ‖Y‖2
‖Ŷ‖2

)−Y) ∗ sgn(ReLU(θ)) ∗ δK1
∗ sgn(ReLU(h)) ∗ αK1

+ 2λ2K1

∇K2Lg(K1,K2, λ1, λ2) =
∂J

∂K2
+ 2λ2K2

= (Ŷ(1 + 2γ − 2γ‖Y‖2
‖Ŷ‖2

)−Y) ∗ sgn(ReLU)(θ)) ∗ αK2 + 2λ2K2

9


	 
	Introduction
	Statement of the Problem
	Primal Formulation of a Single Convolution Block
	Subgradients of the CNN
	KKT conditions and Dual Problem of a Single Convolution Block

	Experimental Approach
	Network Architecture
	Evaluation

	Results
	Conclusion

	 Appendix
	Appendix
	Notation
	Primal Formulation of a two-layer CNN
	Dual Formulation of a two-layer CNN
	KKT conditions of a two-layer CNN
	Computing Gradients of CNN Layer Block
	KKT Conditions for Primal Formulation



