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Abstract

Whether one can recover the shape of an object through its Laplacian spectrum
is a classical problem with a wide range of applications on computer vision and
graphics. While theoretically we cannot fully recover the shape only based on
spectrum, in practice we can approximate the solution. In this report we introduce
a specific solution, namely isospectralization. We investigate its mathematical
background, implement the procedure using modern deep learning framework, and
reformulate a novel dual problem solved by projected subgradient method.

1 Introduction

Even long before the French mathematician Joseph Fourier discovered Fourier theorem have people
already been quite familiar with the relation between the pitch of a sound and its frequency of
vibration. With the relation in mind, people have been constructing musical instruments by strings for
thousands of years, also aware of the fact that the frequency is closely related to the length of a string.
An interesting byproduct of this knowledge is that given two strings tightened to a similar level, all
the same except for lengths, one can tell the relative length by the sounds from plucking them. Can
these abilities be generalized to other objects such as 2D drum and even 3D object? In other words,
can we tell the shape of an object by hearing the sound of it? Mathematician and computer scientists
have been studies on this problem for decades. Although exact recovery is impossible, approximation
algorithms work quite well. We will introduce mathematical background, formal problem description,
a relevant algorithm and its potential improvement for this problem.

2 Mathematical Background

2.1 Wave Equation and the Laplacian

We will introduce how the case of one dimensional string can be extended into two dimensions.
Given a membrane on a 2D plane (with x-y Cartesian coordinates) fixed along its boundary Γ, its
motion perpendicular to the plane is called displacement, denoted as F (x, y; t) ≡ F (−→ρ ; t). The
displacement must follow the wave equation

∂2F

∂x2
= c2∆F

with boundary condition F = 0. In this equation ∆ is the Laplacian operator and c is some constant
related to the physical properties of the membrane; for simplicity, let c2 = 1

2 . With the wave being
sound wave, the solution to this wave equation must be of special form (being harmonic in time):
F (−→ρ ; t) = U(−→ρ )eiωt. After some derivation the solutions must satisfy 1

2∆U + ω2U = 0 with the
aforementioned boundary condition.

2.2 Laplacian Spectrum

After decades of efforts, mathematicians discovered that there exists a set of solution for the equation
above, namely, a set of eigenfunction ψn(−→ρ ) ≡ ψn such that with the corresponding eigenvalues λn



Figure 1: Edge eij has length lij , triangle Fijk has area Aijk.

the following equations hold:
1

2
∆ψn + λnψn = 0

Similar to the case in linear algebra, the set of eigenfunctions and eigenvalues are call the spectrum
of the Laplacian operator.

The problem of "hear" the shape of the membrane is then articulated as to compute the boundary of
the membrane given its Laplacian spectrum, called isospectralization, the term in the title. Notice
that in practice problems are discretized, in the sense that we only try to recover the discrete structure
of the membrane, represented by a mesh (or a weighted graph). Accordingly the Laplacian would be
a discrete Laplace operator of the underlying graph. The details of this process will be introduced in
section 3.

2.3 Calculus of Spectrum

Since we deal with isospectralization in an optimization approach, the process involves computing the
gradient of the spectrum. The derivation is as below, with the fact that the (discrete) Laplacians are
always Hermitian. Given normalized eigenvector v of the matrixA such thatAv = λv, if differentiate
two sides of the equation, we have

∂(A)v +A∂(v) = ∂(λ)v + λ∂v

vT∂(A)v + vTA∂(v) = vT∂(A)v = ∂λ

Notice that the calculation involves calculating the eigenvectors; this might lead to some inefficiency
in optimization based approach. Because if the eigen-gap of the Laplacian is relatively small, the
numerical errors caused in computing the eigenvectors might be devastatingly large, leading to
inaccurate gradient.

3 Problem Formulation

3.1 Laplacian of Discrete Triangle Mesh

In the discrete setting, one shape can be approximated by manifold triangle meshes X = (V,E, F ),
where V is the set of vertices sampled at v1, ..., vn, and where each edge eij ∈ Ei ∩ Eb belongs
to at most two triangle faces Fijk and Fjih, as shown in Figure 1. We use Ei and Eb to denote
the interior and boundary edges respectively. The discrete metric is defined by assigning a length
lij > 0 to each edge eij ∈ E. Here we use L2 distance: lij(V ) = ‖vi − vj‖2 for all eij ∈ E. The
discrete Laplace-Beltrami operator is defined in the form of a n by n matrix ∆ = A−1W , where A
is a diagonal matrix of local area elements ai = Σjk:ijk∈FAijk/3, and W is a symmetric matrix of
edge-wise weights, defined as:

wij =


−l2ij+l

2
jk+l

2
ki

8Aijk
+
−l2ij+l

2
jh+l

2
hi

8Aijh
eij ∈ Ei

−l2ij+l
2
jh+l

2
hi

8Aijh
eij ∈ Eb

−Σi6=kwik i = j

The mesh connectivity and intrinsic geometry are all encoded in this Laplacian operater, which is
related with the vertex coordinates V (via the lengths lij). We further denote the Laplacian matrix of
the mesh of V by ∆X(V ).
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3.2 Isospectralization

Our approach focues on how to use a limited portion of Laplacian spectrum to reconstruct the shape
of the target, with some simple regularizers ρ to preserve the boundary or triangulized properties.
Given an initialization of coordinates V , and a limited portion of Laplacian spectrum µi from the
target, we want to minimize the L2 distance of λi(∆X(V )) and µi. The objective is:

min.V ∈Rn×d ‖λ(∆X(V ))− µ‖w + ρ(V )

where ‖λ(∆X(V ))− µ‖w = Σki=1
1
i (λi − µi), with a scale factor 1/i on corresponding eigenvalues,

here λ1 ≤ λ2... ≤ λk. Without this weight, simply aligning the high frequencies will produce
smaller loss, but most errors will accumulate on the lower end and harm the result. We thus adopt the
weighted norm to balance the effects. To preserve the smoothness of the boundary, we define the first
regularizer:

ρ1,X(V ) = Σeij∈Eb
l2ij(V )

The second regularizer penalizes triangle flips that may occur throughout the optimization, and works
under the assumption of clockwise oriented triangle.

ρ2,X(V ) = (Σijk(Rπ/2(Vj − Vi))T (Vk − Vi))−

where Rπ/2 is a rotation matrix rotating vectors by π/2, and (x)− = min(x, 0)2.

3.3 Dual Problem and Projected Subgradient

We usually need to adjust the hyper-parameter added on the regularizers, which is usually quite tricky,
since the result can be very sensitive to it. But with some prior knowledge when design this problem,
we can accept all the pareto-optimal solutions with regularizers bounded by ε. We can reformulate
the problem as:

minimizeV ∈Rn×d ‖λ′(∆X(V ))− µ‖w
s.t. ρ(V ) ≤ ε

Note that in our objective, this regularizer won’t introduce convexity to make the optimization easier,
so moving it from the objective to constraint won’t introduce extra cost. To distinguish between the
eigenvalues and Lagrangian dual variable, here we use λ′ to denote the eigenvalues of Laplacian
Matrix ∆X(V )). Then we can obtain the Lagrangian of the objective:

L(V, λ) = ‖λ′(∆X(V ))− µ‖w + λ(ρ(V )− ε)

Based on the knowledge of Lagrangian dual, we know the objective for the dual problem is

g(λ) = infV L(V, λ) = infV (‖λ′(∆X(V ))− µ‖w + λ(ρ(V )− ε))

Here we know the formulation of L(V, λ), which is obviously not convex. But for infV L(V, λ) when
λ is given, we can always find corresponding optimal V = V ∗(λ) to minimize the Lagrangian. Then
by definition, we have:

g(λ) = (‖λ′(∆X(V ∗(λ)))− µ‖w + λ(ρ(V ∗(λ))− ε))

which is a function of λ.

Then we can write the dual problem formulation:

max. g(λ) s.t. λ ≥ 0

Recall the primal problem:

minimizeV ∈Rn×d ‖λ′(∆X(V ))− µ‖w

s.t. ρ(V ) ≤ ε
Note that if want to optimize the objective in primal, following the update rule Vk+1 = Proj(Vk −
αk ∗ gk), we need to project Vk+1 to the feasible set every update step. Here gk is the subgradient
(or quasi-gradient) of the objective at Vk, since the objective is not differentiable everywhere for the
discrete mesh.
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Figure 2: From sphere to apple and airplane in 1000 iterations

Figure 3: From oval to triangle and rectangle in 1000 iterations

Calculating such projection in primal is infeasible here, since the regularizer is not convex. But for
the dual problem, the update rule is: λk+1 = (λk + αk ∗ gk)+

The projection in the dual is very easy to compute: just making all the negative elements of λk+1

become zero, which equals to project it to a non-negative convex cone. Since

g(λ) = infV L(V, λ) = infV (‖λ′(∆X(V ))− µ‖w + λ(ρ(V )− ε))
The subgradient at λk is also easy to compute, which is gk = ρ(V ∗(λk))− ε.
Suppose V ∗(λk) is an minimizer of Lagrangian given λk solved by Adam optimizer. So we can
update iteratively in primal and dual.

Vk = V ∗(λk), λk+1 = (λk + αk ∗ (ρ(Vk)− ε))+
This problem will converge both in primal and dual if Slater’s condition is satisfied.

4 Experiments

For both 2D and 3D meshes, we only use the largest 30 eigenvalues to reconstruct the shape of the
target. For 3D meshes, such number of eigenvalues is not sufficient to reconstruct the shape since the
Laplacian have thousands dimensions, and increasing the number will cause the process to be very
slow. The reconstruction in 1000 iterations is shown in Figure 2: As for 2D meshes, we show the
result from circle to rectangle, and circle to triangle in 1000 iterations in Figure 3.

Individual Contribution

The slides, presentation and report are finished in teamwork. Jiayuan Gu Implemented the pipeline
of isospectralization using PyTorch, conducted experiments on 2D and 3D meshes. Zhiwei Jia Inves-
tigate the mathematical background, using Matlab to optimize the L2 distance between eigenvalues
and make the result more accurate. Fangchen Liu Formulate and analyze the constrained primal and
dual problem, using the projected subgradient method to solve the dual problem implemented by
PyTorch.
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