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Abstract

Semantic image segmentation plays a very important
role in a wide variety of computer vision applications (e.g.,
robotics, autonomous driving, human-computer interac-
tion). Previous methods (such as graph-cut and energy min-
imization) only consider hand-craft features (e.g., the color
information, the affinity of the pixels), thus can not reach
satisfying results. Recent years, with the popularity of deep
learning, the performance of semantic image segmentation
has been boosted a lot. However, due to the limited resolu-
tion of the prediction, the results are still unsatisfactory. In
this paper, we innovatively integrate deep learning into con-
ditional random field framework. We treat the prediction
of the neural nets as a unified term, and we construct the
pairwise term using the semantic features from the neural
nets. Based on minimizing the global energy, we can obtain
more smooth and accurate results. Exhaustive experiments
demonstrate the effectiveness of our proposed method.

1. Introduction
Semantic segmentation is one of the key problems in

computer vision. It is basically a a pixel-wise classifica-
tion problem. Fine-grained inference is achieved by mak-
ing dense predictions inferring labels for every pixel. From
the high level, semantic segmentation is one of the most
significant tasks to achieve complete scene understand-
ing. The importance of scene understanding is accentuated
with an increasing number of applications that infer knowl-
edge from images. Some of these applications include au-
tonomous driving, aerial image analysis, 3D reconstruction,
medical image processing and robot-assisted surgery.

Conditional random fields (CRF) is a probabilistic
framework for inferring structured and sequential data. It
is widely used in natural language processing problems and
have achieved a certain level of success. In the pipeline

of CRF learning based image segmentation, finding a good
feature representation is of great significance, and can have
a profound impact on the segmentation accuracy. Most pre-
vious studies rely on hand-crafted features, e.g., using color
histograms, HOG or SIFT descriptors to construct bag-of-
words features, these methods have strong limitations when
applied in complicated scenes. Based on these observations,
we innovatively integrate deep learning method into CRF
framework.

Recently, feature learning and especially deep learning
methods have gained great popularity in machine learn-
ing and related fields, This type of methods typically takes
raw images as an input and learn a (deep) representation of
the images, and have found phenomenal success in various
tasks such as classification, object detection, and tracking,
etc. Deep learning methods attempt to model high-level ab-
stractions in data at multiple layers, inspired from the cogni-
tive processes of human brains, which generally starts from
simpler concepts to more abstract ones. The advantages
of deep learning methods shed light on us to integrate it
into the CRF framework. On one hand, we want to take
merits of the powerful features learned through the data-
driven method, on the other hand, we rely on graph model
to guarantee structural completeness. We innovatively in-
corporate the learned features to model the co-occurrence
pairwise potentials, and minimize the energy function to
achieve smooth and structured predictions.

2. Related works
Before deep learning took over computer vision, people

used approaches like Graph-cut based method for semantic
segmentation. After the image is turned into a graph, seg-
mentation can be considered as a two-way partition prob-
lem. The two subsets of nodes after min-cut is the fore-
ground and background in image segmentation.

One of the popular methods using deep learning tech-
nique to do semantic segmentation is using Fully Convolu-
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tional Network(FCN)[1]. FCN will learn a mapping from
pixels to pixels, without extracting the region proposals. As
an extension of the classical CNN, FCN can take input as
arbitrary-sized images. The key intuition behind FCN is
that fully connected layers in classification networks can be
considered as convolutions with kernels that cover the entire
input regions, which is equivalent to evaluating the original
classification network on overlapping input patches. How-
ever, this is more efficient since the computation over the
overlapping regions of patches is shared. One issue of FCN
is that after several convolutional and pooling layers, the
resolution of the feature maps is down sampled. Thus, the
direct predictions of FCN are usually in low resolution, re-
sulting in relatively fuzzy object boundaries. U-Net[2] is
one example of FCN.

3. Method
3.1. Conditional random field revisiting

Before fomulating our problem, we will first introduce
some preliminaries of CRF model. CRF[3] is a undirected
graph consists of label nodes and observation node. In the
image segmentation settings, every pixel in the image is re-
lated to one label node and one observation node. Two label
nodes are connected if and only if the corresponding pixels
are connected. Mathematically, we define each pixel is a
random variable from X = {X1, X2, X3, ..., Xn} and each
Xa takes a label xa from L = {x1, x2, x3, ..., xd}, where n
and d are the total number of pixels and labels respectively.
In order to abtain the final label assignment of each pixel,
we will minimize the Gibbs enegy function of CRF, which
has the following form:

E(x) =
∑
a

φ (xa) +
∑
a,b6=a

ψ (xa, xb)

where φ (xa) denotes the unary potential of a pixel and
ψ (xa, xb) denotes the binary potential of a pair of pixels.
The unary term and the binary term represents the data cost
and the smoothness cost respectively. Mathematically, they
can be written as:

φ (xa) = − log p (xa)

ψ (xa, xb) = u (xa, xb)
∑
c

ω(c)k(c) (fa, fb)

Here, the unary term is defined as the negative log likeli-
hood of the assigned labels, and the binary term is defined as
an weighted sum of different kernels. Note that u(xa, xb)
measures that compatibility of label xa and label xb, for
simplicity, we use the potts model and set u(xa, xb) =
1(xa 6= xb). Intuitively, the binary term guarantees that
when the total energy is minimized, same labels will be as-
signed to pixels that are similar. The simialarity is related to

pixels’ relative positions and also other features, depending
on the kernels that are used.

3.2. Energy function generalization

In previous studies, RGB values from the original im-
age is widely used as feature input[4][5]. While using RGB
features has achieved certain results, in our study, we inno-
vatively build a universal framework that allows the energy
function to incorporate general features.

In this framework, multiple bilateral kernels are used.
Without loss of generality, a bilateral kernel can be repre-
sented as the followings:

k(i) (fa, fb) = exp

(
−|pa − pb|

2

2θ2α
− |Ia − Ib|

2

2θ2β

)
Here, pa, pb represent the coordinate information of

pixels Xa, Xb, and Ia, Ib are holders for other arbitrary
features. While the coordinate information is fixed, we
can utilize different pixel-level features to model the co-
occurrence pairwise potentials. For instance, If we let Ia
be a constant, the kernel reduces to a smoothness kernel;
if we let Ia be RGB values of the original image, it forms
an appearance kernel; if we let Ia be learned features from
the deep network, it forms a textural kernels. A simple
schematic diagram is shown as Figure. 1.

Figure 1. General framework diagram

In our paper, we test the framework with RGB features,
with textural features extracted from deep network layer and
with the combination of the two.

3.3. Problem definition

With the gibbs energy function defined, we formulate the
optimization problem as following:

miny E(y) =
∑
a

∑
i φa:iya:i +

∑
a,b 6=a

∑
i,j ψab:ijya:iyb:j

s.t.
∑
i ya:i = 1 ∀a ∈ {1 . . . n}

ya:i ∈ {0, 1} ∀a ∈ {1 . . . n}, ∀i ∈ L
(1)

Here, y is the assignement matrix for X, where ya:i = 1
if and only if the label assignment of random variable Xa



is i, or namely xa = i. Also notice that we use φa:i =
φ (xa = i) , ψab:ij = ψ (xa = i, xb = j) for short.

3.4. Optimization details

Notice that the problem defined above is an integer pro-
gramming problem, which is ingeneral NP-hard. To solve
this, a commonly used techique is linear programming re-
laxation, that is, relaxing the integer constrains on ya:i to
allow it to be fractional values in [0, 1][4]. The resulted lin-
ear programming problem is written as the following:

min
y
Ẽ(y) =

∑
a

∑
i

φa:iya:i +
∑
a,b6=a

∑
i

Kab
|ya:i − yb:i|

2

s.t. y ∈M =

{ ∑
i ya:i = 1, a ∈ {1 . . . n}

ya:i ≥ 0, a ∈ {1 . . . n}, i ∈ L

}
(2)

where Kab =
∑
c w

(c)k
(
f
(c)
a , f

(c)
b

)
. Notice that we can

easily substitute |ya:i − yb:i| and add linear constrains to
eliminate the absolute function, the fomulation above is in-
deed a linear programming problem. Although the above
relaxatoin can be solved by a standard solver, the compu-
tation involves O

(
n2
)

unknown variables and hence is un-
manageable.

In order to accerlerate computation, we employ PROX-
LP algorithm[5] proposed by Ajanthan et al. The algo-
rithm minimizes Ẽ(y) iteratively to increase speed and save
space. Its advantages include smooth updates and monotone
descent of objective function. Particularly, suppose at time
t we have assignment matrix yt, the next update involves
solving:

miny Ẽ(y) + 1
2λ

∥∥y − yk
∥∥2

s.t. y ∈M
(3)

where measures the strength of the proximal term.
To formulate the dual problem, We introduce shawdow
price variables α =

{
α1
ab:i, α

2
ab:i|a, b 6= a, i ∈ L

}
,β =

{βa|a ∈ {1 . . . n}} ,γ = {γa:i, a ∈ {1 . . . n}, i ∈ L} , and
define (Aα)a:i = −

∑
b 6=a

(
α1
ab:i − α2

ab:i + α2
ba:i − α1

ba:i

)
(Bβ)a:i = βa for simplicity. With the notations defined,
the dual problem of (3) can be written as:

min
α,β,γ

g(α,β,γ) =
λ

2
‖Aα+Bβ + γ − φ‖2

+
〈
Aα+Bβ + γ − φ,yk

〉
− 〈1,β〉

s.t. γa:i ≥ 0 ∀a ∈ {1 . . . n} ∀i ∈ L

α ∈ C =
{
α

∣∣∣∣ α1
ab:i + α2

ab:i =
Kab

2 , a, b 6= a, i ∈ L
α1
ab:i, α

2
ab:i ≥ 0, a, b 6= a, i ∈ L

}
(4)

Finally, we employ iterate gradient descent to solve the
dual problem.

4. Experiments
4.1. Data set

We utilized the Cityscape dataset, which contains video
sequences recorded in street scenes from 50 different cities,
with high quality pixel-level annotations. The training set
includes 2975 RGB frames and the validation set includes
500 RGB frame.

4.2. Quantitative analysis

w/o CRF w/ CRF
Accuracy 0.884 0.892

Table 1. Overall accuracy

catagory accuracy w/ CRF (%) accuracy boost (%)
building 96.75 1.41
terrain 25.51 0.97

vegetation 96.65 0.78
wall 74.34 0.72
road 89.30 0.67

bicycle 97.82 0.16
rider 11.97 0.14
truck 47.74 0.13

sidewalk 87.18 0.13
fence 0.00 0.00
train 0.00 0.00

motorcycle 0.00 0.00
bus 0.00 0.00
car 98.60 0.00

traffic light 0.17 -0.09
person 85.15 -0.92

traffic sign 19.74 -1.50

Table 2. Accuracy by categories

Figure 2. Accuracy boost by categories (in percentage)

4.3. Qualitative analysis

See figure 2.



Figure 3. Qualitative results comparison.

5. Conclusion and future work
In this work, we presented a method for improving the

semantic segmentation results. Experiments demonstrate
that some errors can be removed through minimizing our
proposed energy function. Also, our method can be applied
on new data which are out of the training domain.

For the future work, we can extend the proposed en-
ergy function to temporal domain, so as to achieve spatial-
temporal continuity.

References
[1] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully

convolutional networks for semantic segmentation. CoRR,
abs/1411.4038, 2014.

[2] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net:
Convolutional networks for biomedical image segmentation.
CoRR, abs/1505.04597, 2015.

[3] Pradeep D. Ravikumar and John D. Lafferty. Quadratic pro-
gramming relaxations for metric labeling and markov random
field map estimation. pages 737–744, 01 2006.

[4] Alban Desmaison, Rudy Bunel, Pushmeet Kohli, Philip H. S.
Torr, and M. Pawan Kumar. Efficient continuous relaxations
for dense CRF. CoRR, abs/1608.06192, 2016.

[5] Thalaiyasingam Ajanthan, Alban Desmaison, Rudy Bunel,
Mathieu Salzmann, Philip H. S. Torr, and M. Pawan Ku-
mar. Efficient linear programming for dense crfs. CoRR,
abs/1611.09718, 2016.


