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Motivation 
The problem of optimization involving the spectrum of a matrix has been historically important 
for both theoretical and practical reasons. Given some matrix-value function of the free 
variables, the problem is to minimize an objective that involves the spectrum of the function or 
subject to constraints related to the spectrum. For instance, rank minimization and low rank 
approximation problem of matrices can be formulated via relaxation as convex problems that 
involve the spectrum. In our research project, we work on the problem of shape recovery of 
geometric objects; specifically, the problem can be formulated as an optimization problem over 
the Laplacian spectrum of the graphs that represent the shapes. We plan to make improvement 
over the optimization process proposed by [1]. 
 
Background 
Whether one can recover the shape of an object from its Laplacian spectrum is a classical 
problem in spectral geometry. Although the spectrum carries many geometric and topological 
information, it is still impossible to recover the full metric from it. Counter-examples of 
non-isometric isospectral manifolds have been constructed in 1960s. The theoretical existence 
of these counter-examples cannot preclude the possibility of reconstruction from spectrum in 
practice, which is exactly what we will explore. 
 
[1] introduces a numerical procedure called iso-spectralization, which consists of deforming a 
mesh in order to align a given Laplacian spectrum of the target shape. This techniques can be 
widely used in some cutting-edge topics of computer vision and graphics, such as style and 
pose transfer across objects. To be specific, the solution is to apply iso-spectralization on the 
source shape to align the eigenvalues with the target shape, and the resulting shape has the 
similar pose with the source shape, and similar geometric details with the target shape. 
 
Recently, there have been attempts at reconstructing 3D shapes from full Laplacian matrix or 
other intrinsic operators [3, 4]. Such methods differ from ours since they leverage the complete 
information encoded in the input operator matrix, while we only have the operator’s eigenvalues 
as input. What’s more, in computer graphics, several shape modeling methods involve the 
known mesh connectivity and additional extrinsic information, such as user-provided landmarks 
and hand-crafted features, while our method doesn’t rely on them. 
 
There are additional methods that related to our approach that explore the possibility of 
reconstructing shapes from their spectrum in the case of coarsely triangulated surfaces, such as 
[5, 6]. But [5] and [6] study shapes with a low number of degrees of freedom, while our methods 
allow every vertex in the mesh can move. 



 
Statement of problem 
A mesh could be represented by a graph . The Laplacian spectrum of is< , , FX = V E  > X  
defined as the eigenvalues of the Laplacian of . The discrete Laplacian operator is denotedV  
as (V ).ΔX  
 
Given a mesh , and the Laplacian eigenvalues  of the target mesh ,< , , FX = V E  >   μ Y  
iso-spectralization is defined as the following optimization problem 

|λ(Δ (V )) || (V )min
V∈Rnxd

| X − μ w + ρX  

where  is the operator to calculate eigenvalues ordered by the magnitude and  is a(·)  λ (V )  ρX  
regularizer over ; ,  is the dimension of vertex, say, 2 for a plane and 3 for a pointV V |  | = n d  
cloud. Notice that is a non-linear and non-convex operator of .(V )ΔX V  
 
Data 
Random Graph/Mesh 
FAUST inter-subject dataset [7] 
ShapeNet [8] 
 
Plan and Innovative Methods 

1. Implement iso-spectralization according the paper [1]. Test our algorithm on synthetic 2D 
flat shapes and surfaces. 

2. Improve optimization methods. The authors of [1] resort to modern deep learning tools, 
like Tensorflow, to solve the highly non-linear optimization problem directly. 
There are several directions to explore: 

a. Decompose the original problem into two optimization problems. And alternative 
optimization might be applied. 

i. Norm optimization: ,​ which is a convex|λ(L ) ||min
L ∈RX

nxn
| X − μ w  

optimization problem. 
ii. Non-convex optimization: |λ(Δ (V )) || (V )min

V∈Rnxd
| X − L w + ρX  

b. The choices of regularizer to ease the optimization.(V )ρX  

c. The convex approximation of (V )ΔX  
3. Apply the modified version to point clouds apart from meshes. 

 
Task Assignment: TBD 
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