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1 Introduction

1.1 Motivation

Autonomous driving is one of the most important thrust areas for application
of AI and computer vision. Datasets in this space are created by leveraging
sets of highly detailed maps that are developed partly with manual annotation.
These are meticulously annotated and provide information about various lanes,
signs and traffic rules, speed limits, etc. Such datasets exist for a few cities and
provide accurate annotations. However, this method consumes a lot of resources
to create, update while also not being tenable to develop at scale. While these
datasets are useful, they do not provide a Birds Eye View of the road which has
been shown to be highly valuable for navigation. Aerial images spatially cover
the entire world and consume far less resources for acquisition. We could use
these aerial images along with the HD maps provided by autonomous driving
companies [3] to train the deep learning models for automating the tasks such
as semantic segmentation. However, aerial images are acquired from a different
source and thus, have to be accurately aligned with the existing HD maps before
they can be used for autonomous navigation. Alignment issues between these two
sources are mainly due to HD maps being created by assuming a flat-view of the
world while satellite imagery is taken from a spherical Earth. In this work, we
seek to minimize the alignment error between satellite imagery and HD maps
by formulating it as an energy minimization problem [18].

1.2 Related Works

There are two parts to the pipeline that we use here. The first one being image
segmentation and the the other being the main problem of image alignment
itself. These problems have been tackled with various approaches in the past few
decades. Those approaches can be broadly summarized as follows.

Earlier approaches of image segmentation were based on thresholding. These
methods selected a globally optimal threshold by maximizing the inter-class
variance. Later region growth based segmentation were used. The methods start
with seed pixels and iteratively grow the region of pixels similar to them in
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the neighbourhood. Edge detection based segmentation methods and clustering
based segmentation have also been successfully used in various cases. Latest
advancements came with the advancement in neural networks in the form of
CNNs. Various methods by Badrinarayanan et. al. [1],Ronnenberger et. al. [14],
Chen et. al. [4] have been developed that produce highly accurate segmentation
results.

Specifically in the case of aerial image segmentation, the initial approaches
to this problem were using probabilistic methods that had topological constraint
for producing connected road segments [2]. In recent years many deep learning
based methods have been developed [12][11][17]. A highly related past work on
this is by Seo et. al.[15]. They use a road classifier and lane detection modules
followed by a heuristic approach to connect the hypotheses generated into a
single lane segment. Some other methods also apply leaning based pipelines to
find correspondences between ground images taken by on board sensors and map
them to a projected version of aerial maps and vice versa [8][16][6].

1.3 Contribution and Organization

In this assignment, we have adapted pretrained model from Zhou et al. [19]
to get segmented roads as outputs from aerial images. The major part of this
assignment is to rectify the alignment differences between nuscenes dataset and
the aerial images obtained from google maps so that the aerial maps can then be
further used for autonomous driving applications. The approach we are taking
here is formulating this as an optimization problem and using first a simple search
algorithm and then a descent method called Block Coordinate Descent (BCD) to
reach the minimum. The novelty and main attraction for this method is that it is
practically unsupervised and does not require the resources required by learning
based methods in terms of compute power or data. Further sections of this
report are divided into a section describing the primal and dual of optimization
problem formulation, the dataset and workflow and the approach taken to solve
the problem.

2 Problem Statement

We take as input, HD maps and their corresponding satellite imagery. Since
these two pieces of data are obtained from different sources, there is significant
misalignment due to which they cannot be used together for downstream pro-
cessing. In this work, we present an efficient method to obtain alignment through
Block Coordinate Descent optimization.

We achieve this by formulating the problem as a convex optimization prob-
lem. Let us define the cost of alignment as the required shift(displacement) in
GPS co-ordinates. Displacement is a 2-d vector one dimension corresponds to
shift in latitude and other longitude. Let us define the penalty for any misalign-
ment in the form of an energy function E(I1, I2, d) where I1 and I2 are the
aerial image and HD map images and d is displacement. For this problem, we
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constraint on the variable displacement. we want the absolute value of displace-
ment in both longitude and latitude to be less a scalar. We will go through the
energy function which we minimize in detail.

Energy Function

Unary Potential: For each displacement we first compute overlap for each
block between HD map and displaced aerial image as number of pixel matches.
We want to maximize this overlap, but we want to minimize the energy, so we
define unary potential as weighted sum of overlap and displacement as follows

ϕ(I1, I2, d) =
∑
i

∑
j

W1(1−O(I1,ij , C(I2,ij , dij))) +W2(dij)

Where C is shift function and O is overlap function.

O(I, I ′) =

∑
x

∑
y Ixy ∗ I ′xy∑
xy Ixy

and C(I, d)xy = Ix−dx,y−dy

Smoothness Constraint: We try to minimize difference between displace-
ments of adjacent blocks.

S(I1, I2, d) =
∑
i

∑
j

∥di+1,j − di,j∥+ ∥di,j+1 − di,j∥

So combining them gives us energy function in BCD.

E(I1, I2, d) = W3 ∗ ϕ(I1, I2, d) +W4 ∗ S(I1, I2, d)

Optimization

We need to compute optimum d that minimizes energy function.

d∗ = argmindE(I1, I2, d)

Primal

We need to compute optimum d that minimizes energy function.

mind E(I1, I2, d)

s.t. ∀ij |dij | ⪯ c
(1)
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Dual

First we will compute dual without smoothness constraint. As there is no global
constraint over all blocks we could just optimize each block individually. So I
will drop ij in the notation and primal becomes

mind W1(1−O(I1, C(I2, d))) +W2(d)

s.t. d ⪯ c and− d ⪯ c
(2)

so lagrangian

L(d, λ1, λ2) = W1(1−O(I1, C(I2, d)))+W2(d)+λ1(d−c)+λ2(−d−c) λ1, λ2 ≥ 0

so dual g(λ1, λ2) = infd L(d, λ1, λ2) differentiating W.R.T dx

−W1
∂O(I1, C(I2, d))

∂dx
+W2 + λ1 − λ2 = 0

−W1

∑
i

∑
j I1,ij ∗

∂C(I2,d)ij
∂dx∑

ij I1,ij
+W2 + λ1 − λ2 = 0

Let I2X be x direction derivative of image I2 which can be computed using
convolution with x derivative kernel. we know ∂

∂dt
f(x− t) = −1 ∗ f ′(x− t) from

taylor series. so above equation reduces to

W1

∑
i

∑
j I1,ij ∗ I2X,i−dx,j∑

ij I1,ij
+W2 + λ1 − λ2 = 0

So finally it can be written as.

W1(O(I1, C(I2X , d))) +W2 + λ1 − λ2 = 0

It is hard to write closed form solution this dx let it be d∗.
So dual problem is

maxλ1,λ2
W1(1−O(I1, C(I2, d

∗))) +W2(d
∗) + λ1(d

∗ − c) + λ2(−d∗ − c)

s.t. W1(O(I1, C(I2X , d∗))) +W2 + λ1 − λ2 = 0

d∗ ⪯ c and− d∗ ⪯ c and λ1, λ2 ≥ 0

(3)

Similarly we can write for dy This is the optimization we did in greedy search
explained below and it doesn’t have global constraints which we introduced
by adding smoothness constraint and we solved global optimization using block
gradient descent. The dual for global optimization will have a term for derivative
of smoothness in f0 and h0 term of dual and there would double summations
for some terms. we are not writing dual for primal to global as it is similar to
above dual just following term would be the addition.

∂

∂dij,x
S(I1, I2, d) = −

d(i+1,j),x − dij,x

∥di+1,j − di,j∥
−

d(i,j+1),x − dij,x

∥di,j+1 − di,j∥
+

dij,x − d(i−1,j),x

∥di,j − di−1,j∥

+
dij,x − d(i,j−1),x

∥di,j − di,j−1∥
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KKT Conditions

let d∗ and (λ∗
1, λ

∗
2) be any primal and dual optimal points with zero duality gap.

So KKT conditions are as follows

∀ij d∗ij − c ≤ 0

∀ij − d∗ij − c ≤ 0

λ∗
1 ≥ 0

λ∗
2 ≥ 0

∀ij λ∗
1(d

∗
ij − c) = 0

∀ij λ∗
2(−d∗ij − c) = 0

∀ij
∂

∂dij
E(I1, I2, d

∗) + λ∗
1 − λ∗

2 = 0

(4)

Where

∂

∂dij,x
E(I1, I2, d

∗) = W3 ∗
∂

∂dij,x
ϕ(I1, I2, d

∗) +W4 ∗
∂

∂dij,x
S(I1, I2, d

∗)

∂

∂dij,x
ϕ(I1, I2, d

∗) = W1(O(I1, C(I2X , d∗))) +W2

3 Dataset and Workflow

We use the NuScenes [3] dataset for this project. The NuScenes dataset is widely
used for the development of novel algorithms in the autonomous navigation
space. The dataset contains a wide-suite of sensors, including LiDAR, RADAR
and street-view images. In addition, the dataset contains a centimeter accurate
human annotated semantic map, known as the NuScenes HDmap. While satellite
imagery have been shown to be useful for navigation, the NuScenes dataset, like
many others in this space do not contain aerial imagery as part of its data suite.
In this work, we present a generic method to augment autonomous navigation
datasets with aerial imagery. We download aerial imagery from Google Maps
at a zoom level of 21, fully encompassing the scope of this dataset. Since the
NuScenes dataset and satellite imagery are obtained from different sources, they
are not in alignment and cannot be directly used. We use the HD maps of
NuScenes dataset to align the aerial imagery with the dataset. The NuScenes
dataset contains four HD maps, 3 in Singapore and 1 in Boston. We apply the
same alignment method for the sub-datasets and report our results. We note
that each HD maps spans an area of 2Km×2Km.

Instead of directly aligning HDmaps and aerial imagery, we first extract roads
from aerial imagery using image segmentation. For this purpose, we then use the
pre-trained model from Zhou et al. [19]. This model is trained on high-resolution
(1024× 1024) satellite imagery for road extraction. We use the roads extracted
from aerial imagery as a proxy to align with the corresponding HD map. Figure
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1 summarizes our workflow. We note that road segmentation methods are inac-
curate and incomplete, making the optimization problem a challenging one to
solve.

Fig. 1: The figure represents the workflow of our approach. We take aerial im-
agery and obtain the predicted roads through image segmentation. We obtain
an initial local alignment between the predicted roads and HD maps through a
Greedy approach. We then perform Block Coordinate Descent optimization for
global alignment.

4 Approach

For each HD Map in NuScenes we have 64 Aerial images we want to align. We
have two approaches for aligning which we go through in this section. Briefly in
greedy approach we align 64 blocks independently and in second approach we
do a smoothness globally by adding constraints on adjacent blocks.

4.1 Simple greedy search

In case of the greedy search, each of the block is allowed a search range of -
15m to 15m in either directions(latitude and longitude), where this search range
corresponds to the displacement of the block. For each block, the unary potential
is given a weight factor of 1(W1) and the displacement is given a weight factor
of 0.001(W2). Each block is aligned with its corresponding nuscenes map such
that the bottom left corner is the south west corner of map. Then for each block,
the overlap and the unary potential are calculated for each step in the search
range and the configuration with the highest overlap (therefore least potential)
and least displacement is chosen.

This method is faster and has much less computational requirement than the
BCD algorithm. But this does not ensure continuity of road segments and is less
accurate. Which we discuss in the results section.

Although this is less accurate, the output from greedy search can be used as
a good starting point for the BCD algorithm to help with faster convergence.
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4.2 Global Optimization using Block Coordinate Descent

We need to compute an optimum d that minimizes the energy function.

d∗ = argmindE(I1, I2, d)

Inspired by [9], we perform an approximate minimization using Block Coordi-
nate Descent(BCD) algorithm. As shown in Figure 2, each iteration of BCD
comprises of four steps. Each step involves methodically restraining a group of
blocks while optimizing the other blocks. Specifically, we fix even rows, odd rows,
even columns and odd columns in the four steps. We initialize the displacement
for each block with the results of greedy search. Post initialization, each step
seeks to optimize the overall energy function, i.e., both the fixed and free blocks
are included in the optimization function. So energy decreases after every iter-
ation. We stop the algorithm when the difference in energy between any two
adjacent iterations is below a user-specified threshold.

4.3 Computational Complexity

Computational complexity: O(Ale/S), where A is the size of the map, l is length
of the local search grid, e is the number of iterations and S is the size of an
individual block.

4.4 Implementation Details

We provide the implementation details for only the Singapore-onenorth to keep
the report succinct. The center of the HD map is [1.288210, 103.784751] in lat-
long coordinates. One meter displacement in latitude and longitude is measured
as 4.28∗10−4 degrees. The local grid search space is 15m in each direction, with
a step size of 1m. The image resolution for each block of aerial imagery and HD
map is 1024 × 1024. The maximum number of iterations is 5. The weights for
overlap, local displacement, and smoothness are chosen empirically as 1, 0.001,
and 0.03 respectively.
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Fig. 2: This shows a single iteration of BCD. In each step we fix the red blocks
and optimize only for green blocks

5 Results

We first validate our model quantitatively by measuring the overlap and smooth-
ness, between the Greedy and BCD optimization. In Table 1, we present the
percentage of overlap between the NuScenes HD map and the aerial imagery.
We use the predicted roads on aerial imagery as a proxy to quantify the overlap
with HD maps. We witness 30% increase in overlap after BCD optimization
in comparison to the overlap before alignment. However, in comparison with
the Greedy optimization, we notice a 2% decrease in overlap. This is expected
as Greedy considers only local alignment and ignore global smoothness. This
hypothesis is validated in Table 2, where we observe Greedy to have an undesir-
ably high smoothness error of 7.94m. Through BCD optimization, we are able
to considerably decrease the smoothness error to 2.56m.

We then observe display the outputs of our optimization method. Figure 3
compares the original NuScenes HD map with the Greedy and BCD stitched
maps after alignment. The adjacent blocks are stitched first left to right and
then top to bottom. In case of overlap, the latest placed block is shown on top.
We notice that the stitched BCD map closely resembles the origingal NuScenes
HD map. While not apparent, the Greedy approach contains many artefacts,
while the BCD approach removes them through smoothing. To highlight the
impact of smoothing, we present short segments of the HD map in 4. On the
top row which represents the results of the Greedy methods, we notice the roads
to be disconnected. On the bottom row, we notice that BCD optimization has
managed to correct this artefact and make the roads continuous.
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Additionally, we compare the overlap of roads in HD maps and aerial imagery
through imposing the road layers one above the other, as shown in Figure 5. The
first row displays the imposed map segments before alignment while the second
row shows the map segments after alignment. It is clear that the overlap between
HD maps and aerial imagery has significantly improved post BCD optimization.
In Figure 6, we also display the imposition of the NuScenes road layer on top of
the aerial imagery. We witness a significant alignment between these two layers.
All these results show significant improvement than before alignment, validating
the quality of our approach.

Dataset Initial Greedy BCD

Boston 57.40% 85.63% 82.37%

Singapore 1 49.05% 79.41% 77.1%

Singapore 2 43.79% 74.29% 72.15%

Singapore 3 51.35% 81.27% 80.90%

Mean 50.39% 80.15% 78.13%

Table 1: % Overlap

Dataset Greedy BCD

Boston 6.53m 1.47m

Singapore 1 8.13m 2.93m

Singapore 2 9.27m 3.56m

Singapore 3 7.83m 2.31m

Mean 7.94m 2.56m

Table 2: Smoothness error

(a) NuScenes HD Map (b) Stitched image from greedy output (c) Stitched image from BCD output

Fig. 3: Comparison of the original NuScenes HD map with the Greedy and BCD
stitched maps after alignment.
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Fig. 4: Comparison of the cropped segments of the stitched HD map between
Greedy (top row) and BCD (bottom row) approaches. We can clearly see arte-
facts in the Greedy approach while they are smoothed in the BCD outputs.
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Fig. 5: In first row we have initial imposition of the roads in HD maps and aerial
images. In the second row we show the imposition of the roads in HD maps and
aerial images after alignment.

(a) (b) (c) (d)

Fig. 6: HD map and aerial imagery after alignment. We notice the roads in HD
maps to clearly align with the roads in aerial imagery.
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6 Conclusions and Further work

In this work, we are proposing an unsupervised, optimization based method
that can be used to find the accurate correspondence between freely available
aerial images and well annotated datasets like nuscenes. This line of work will
enable the wide spread adaption of readily available data from satellite imagery
in autonomous driving and reduce the cost of labour. The method that we have
developed here is based on classical methods and is much less resource hungry
compared to recent learning based approaches. In this work, we have mainly
focused on utilizing the unary potential with a very relaxed constraint on the
smoothness of the image. As part of improving this work, we would like to add
more factors to the minimization problem that take into account other untapped
features such as lane sizes, geometric constrains and semantics. Further we hope
to move beyond iterative methods like block coordinate descent and find a more
robust method that provides the speed of closed form solutions while utilizing
the maximum of available data.

7 Task Assignment

The writing and preparation of report was split equally among the three mem-
bers. Srirangan Madhavan conducted the initial literature survey before dis-
cussion. Manoj Kilaru derived and analyzed the dual and KKT of the greedy
and block coordinate descent problems and implemented initial code for prepar-
ing data. Srirangan implemented the greedy solution and Harish Rithish imple-
mented the main BCD algorithm and conducted the experiment with datasets
and forming the results.
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