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1 Task assignment

* Sudhanshu - Wrote data pipelines of the
framework to get keywords corresponding to
the entities, entity embeddings, and keyword
embeddings. Worked on formalizing the op-
timization function. Generated qualitative re-
sults and worked on reporting performance on
different metrics. Contributed to writing the
final report.

* Gaurav - Setup pipelines for training & eval-
uation of NER model. Wrote pipeline for gen-
erating fine-grained class embeddings, and
keyword re-ranking. Coded the optimization
of the primal problem and performed experi-
ments. Performed extensive hyperparameter
tuning of the NER classifier. Contributed to
writing the final report.

2 Introduction

2.1 Motivation

Named Entity Recognition is a critical task in the
field of information extraction. It takes natural
language input and classifies each word into an en-
tity, which becomes helpful in further downstream
tasks. It helps generate structured data from a
vast corpus of unstructured text across multiple
domains. It also finds extensive usage in biomed-
ical data for gene identification, DNA identifica-
tion, and the identification of drug names and dis-
ease names. Distant supervision approaches (Wang
et al., 2020) rely on generating the dataset using
keyword-matching heuristics. Weak supervision-
based approaches (Lison et al., 2020; Li et al.,
2021a) focus on using a few initial seed keywords
or rules and creating a framework around it to get
a final NER tagger. However, most work has been
focused on coarse-grained NER where each word
gets tagged into very few classes (such as organiza-
tion, person, location).
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Fine-grained NER (Wang et al., 2020; Awasthy
et al., 2020) is necessary to get a better understand-
ing of the entities and should further help with the
information extraction. If there is a sentence ’Joe
Biden is the president of United States of Amer-
ica’, it has 2 entities, (Joe Biden, ’person’) and
(United States of America, ’location’). We should
be able to classify Joe Biden as ’politician’ and
United States of America as ’country.” without
having labeled training data on finer classes. The
focus of our work is to get fine-grained labels for
the entities, given only the entities’ coarse-grained
labels.

2.2 Related work

The named entity recognition task is a well-studied
problem in the NLP community for which tradi-
tional feature engineering methods have been used
extensively (Nadeau and Sekine, 2007). Currently,
a significant fraction of state-of-the-art results are
obtained using Transfomer based models (Devlin
et al. (2018), Liu et al. (2019)), which are very ef-
fective in getting the contextualized embeddings
for words in the sentence. In more recent times,
the problem has been solved using approaches
based on deep learning (Yadav and Bethard (2019))
and transformers (Liu et al. (2019), (Devlin et al.,
2018)), which led to a remarkable performance in
a supervised setting. Further efforts were made to
solve the problem in significantly weaker settings.
Examples include zero-shot NER (Hoang et al.,
2021) and weakly supervised NER. In the weakly
supervised setting, we have a few seed words, rules,
or entities, and then an iterative framework is cre-
ated on top of it to get the final results. The itera-
tive framework keeps adding new rules or entities
in every iteration (Li et al. (2021b), Gupta and
Manning (2014), Niu et al. (2003)). Another set
of approaches includes generating noisy labeling
functions and then creating a named entity recog-
nition tagger (Lison et al. (2020), Safranchik et al.



(2020)). Zero-shot NER refers to the scenario when
we have no human supervision for the NER task.
Hoang et al. (2021) uses an external knowledge
base to get a NER tagger that generalizes to un-
seen domains. Another approach is to formulate
the problem as a Natural Language Inference task,
train it on the NLI dataset, and then further train
the model on a NLI dataset. The final predictions
are made using this new model (Link here).

2.3 Contributions

The current setting of learning fine-grained NER us-
ing weak supervision (Li et al. (2021b), Gupta and
Manning (2014), Niu et al. (2003)) has not been
explored much, and to the best of our knowledge,
we are the first to formulate it as a representation
learning problem. It can also be noted that our
problem is slightly different from other previously
discussed NER settings, as they try to learn the
entity span and its coarse label. On the other hand,
we focus on getting the fine-grained type of the en-
tity conditioned on the entity and its coarse-grained
type. We build upon the hypothesis that the key-
word responsible for coarse grained class would be
more similar to the relevant fine grained class com-
pared to other fine-grained classes. Based on this
hypothesis, we propose a custom loss function. We
write the primal, the dual and the KKT conditions.
We solve the problem using the equations. Finally,
we run experiments using the proposed solutions
and report the performance.

2.4 Organization of Paper

Section 3 discusses the problem statement where
we discuss our problem hypothesis, develop the
primal problem, and write its dual along with KKT
conditions. In Section 4, we provide a brief de-
scription of the dataset. In Section 5, we mention
the approach taken for solving this problem and
discuss the experiments. Further, in Section 6, we
provide an in-depth analysis of our results. In the
final section before references, we conclude our
work and discuss the future work.

3 Statement of the problem

Given a set of sentences along with its coarse-
grained named entity labels. We also have a possi-
ble set of fine-grained classes. The task is to learn
fine-grained labels for all the entities.

Formally : Let s1, s2, ..., S be set of ¢ sentences.

Let s; = (wit, Yei1), (Wi2, Yei2) - (Wil Yeir) be

the set of word and coarse entity pairs for a sen-
tence of length 1, where w;; denotes the j-th word
and y.;; denotes its coarse NER label. We also
have a set of p fine-grained classes, f1, f2,...., fp.

The task is to output yr; = yri1, Yri2, -, Yfil
where y; is the corresponding fine grained labels
for the sentence s;.

3.1 Approach - Hypothesis

We use explainable Al tools such as LIME (Ribeiro
et al., 2016) to help us with this task. First, we find
the keywords responsible for each entity’s class pre-
diction, i.e., if w;; is a named entity and has class
Yeij» then find the keywords among the sentence
s; which is responsible for predicting w;; as class
Yeij- Let the keyword be w; ;. The main hypothesis
behind our approach is described below.

Hypothesis: Let the true fine label of word
wi; be yri.  Then Similarity(wgj, ypij) >
Similarity (w;;, fp)Vp. The concept of similarity
between two words is a well-studied problem in
NLP, and approaches based on cosine similarity &
distance between the two embeddings have been
widely used.

3.2 Primal Formulation

The hypothesis uses the similarity between the key-
word and class label. However, we want to tag the
word w;; and not the keyword w;;,. The entities
would be present in different locations in the vector
space compared to the keywords. Thus we aim to
learn a mapping from the keyword to the entities.

More specifically, let x1, x2, ..., z, be the em-
bedding of the words tagged with the coarse
grained labels and Ay, ho, ..., h, be the embed-
ding for top keywords responsible for these la-
bels in RY. We want to learn a mapping from
R to low dimensional R” using an iterative ap-
proach s.t. Sim(zp, hy,) > Sim(zp, hg)Vq and
Sim(zp, hy) > Sim(zg, hy)Vq. While doing so,
we also want to preserve the local structure among
the entities and the keywords.

3.2.1 Minimizing the distance

Let X and H € R™*9 be matrices representing
embeddings x; and h; respectively. We want to
learn

u € RY = argmin ||(X — H)ul|,
u
However, this leads to trivial solution with u© = 0.

To deal with this, we put the constraint «”u = 1.
Hence, the final objective can be described as :


https://openreview.net/forum?id=-J2Pefs3cw

u = argmin ||(X — H)u|)3 subject to u”u = 1
u

3.2.2 Preserving the local structure

It’s known that maximising the variance while
learning the lower dimensional embeddings also
preserves the local structure between the em-
beddings. This would be similar to the ob-
jective function obtained while doing Principal
Component Analysis (PCA). More specifically,
max(var(Xu)) = max(u’var(X)u). However,
this leads to u = co. We bound u by imposing the
condition u”'u = 1. A similar approach follows for
matrix H. So, the objective function is written as:

u = argmax(u? Xyu + ul Spu)
u
subject to u”u = 1.

where, >, and X, are covariance matrices of X
aand H respectively.

3.2.3 Combined loss function and Primal

It’s difficult to combine both these loss functions,
since they are both convex in u, but in one case we
want to maximise the objective whereas in another
case, we want to minimise it. One way to do this
could be the following:

u = argmin ||(X — H)ull3 —uT (S, + Zp)u
u

subject to uTu = 1
However, the above function won’t be convex.
An alternative formulation could be :
2
(X — H)ull5
ul(X, + 2p)u
subject to uTu = 1

u = argmin
u

This objective now looks very similar to what
we observe in the Fisher’s Discriminant Analy-
sis(FDA). Inspired from FDA, we can modify the
above mentioned objective and constraints to :

u = argmin ||(X — H)u|3
u
subject to u” (X, + Xp)u =1

This is the primal problem for our hypothesis.
We can find the solution to this using primal-dual
formulation or QP based methods.

3.3 Dual Formulation

The objective of the function can be re-written as
(X — H)ull; = u” (X — H)'(X — H)u

We will start by writing the Lagrangian of the prob-
lem. Let’s assume forv € R

L(u,v) =ul (X — H)T(X — H)u +
v[u (S, + Xp)u — 1]
Simplifying further, £(u, v) is given by
=uT[(X — H)'(X —H)+v(Ze +Zp)]u —v
The Lagrange dual function is defined as:

g(v) = irulf L(u,v)

Lagrangian is a quadratic function, and is un-
bounded below if the minimum eigen value of the
matrix (X — H)T(X — H) + v(X, + X3) is neg-
ative.

Using these properties of eigen values, the dual
function can be given by

—00, for Apin[(X — H)T(X — H)
+v(E; +X5)] <0
otherwise

Here, the A\, denotes the smallest eigen value
of the matrix given. The dual problem is hence
given by

max g(v)

where, v is constrained in the piece-wise function
defined above.

3.4 KKT conditions

We have differentiable objective and constraint
functions. Let u* and v* be the optimal primal
and dual solutions. So, the KKT conditions (Boyd
and Vandenberghe, 2004) for strong duality that
holds are mentioned below:

o Vu L(u*,v) =0
(X — H)'(X —H)+v(Ze + Zn)Ju* =0
— (X - H)"(X - Hu" = —v(Z; + Zp)u*
= e+ %) X - (X -Hw = —vu"

This behaves like a generalized eigenvalue
problem (Ghojogh et al., 2019). Since the
objective is minimization, our optimal primal
solution will be the eigenvector corresponding
to the smallest eigenvalue of the matrix (X, +
Yn) Y X — H)T(X — H). It is to be noted
that (X, + Xp,) is the sum of two covariance
matrices which should be invertible.

o ()T (S, +Xp)u* —1=0

* We don’t have any inequality constraints,
hence, the complimentary slackness condi-
tions are not needed. Similarly, the feasibility
conditions related to inequality conditions are
not needed.



4 Dataset

We are using a supervised NER dataset (Ding et al.,
2021) which contains 188,239 labeled sentences
with its corresponding entities. It is further divided
into 131,767 training samples, 18,824 samples in
dev-set, and 37,648 samples in test set. Each word
can be labeled into one of 8 possible coarse entities.
Further, we aim to learn the mapping of a word
into 66 possible fine grained classes. We want to
emphasize the fact that we don’t use fine grained
labels while training.

5 Approaches

The entire problem is divided into stages where
each stage performs a specific task in our method.
This section elaborates on each step in depth.

5.1 NER Training and Keyword Generation

 Training a classifier for NER: We use a trans-
former based pretrained model - RoOBERTa
(Liu et al., 2019) to classify the entities into 8
coarse grained labels.

The sentence is preprocessed and tokenized
before passing as input to the model, which
predicts the probability for each token in the
sentence. The most probable class for each
word is taken as the predicted entity. The
model is trained on 131,767 sentences and
evaluated on the test set, which is filtered be-
fore training the model.

» Explaining predictions: For every entity that
the classifier predicts into a particular class,
we use LIME (Ribeiro et al., 2016) to get
the importance of keywords that triggered the
classification. We get a rank of each keyword
relevant to its classification for every entity.
We keep the top-ranked keyword for generat-
ing the H matrix defined in the primal. An-
other transformed-based model is used to re-
rank the keywords for a certain entity type to
filter out keywords that are not pertinent. A
list of keywords corresponding to each entity
can be found in Table 1

5.2 Generating the matrices

Once we have the keywords tagged to each entity,
the following steps help generate the matrices X
and H used in the primal.

* Embedding the words: We use a pre-
trained model to get the embeddings of en-
tities and keywords in each sentence. The
model takes the sentence as input and gen-
erates 768-dimensional embeddings for each
token. Entity embeddings are pushed to X
and corresponding keyword embeddings are
pushed to matrix H.

* Representing fine-grained classes: Each
fine NER label is appended with its corre-
sponding coarse label to form a sentence and
generate average embeddings for fine classes.
A 768 dimensional vector will again represent
the embedding of a class.

* Projecting the matrices into low dimen-
sional manifold: The matrices X and H have
768 dimensions which seem to generate co-
variance matrices with very high variance. We
utilize PCA (FR.S., 1901) to project X and H
matrices into a 20 dimensional manifold. The
representation for fine-grained classes is also
transformed in conjunction with matrix H.

5.3 Solving the Optimization Problem

After the desired representation matrices X and
Hare found, we solve the problem according to the
KKT conditions.

Since the solution to the problem involves in-
verting the sum of the two covariance matrices, we
also experiment by adding a slight noise to diagonal
entries of X, + >j,.

The number of eigenvectors to project the gener-
ated matrices is a hyperparameter, and we perform
experiments with the different number of compo-
nents.

5.4 Final prediction

For the final prediction for a given entity, we find
the embedding of the class nearest to the entity
embedding in the newly learnt projected space.

5.5 Experimental details

The constraints in our primal contains the sum of
two covariance matrices, however, we also exper-
iment with multiple variants of this formulation
where the inherent solution stays the same, but the
matrices are changed. These variations include
utilizing the class embeddings and keyword co-
variance matrices in isolation. We also perform
some experiments by utilizing kernel methods on



Coarse Entity | Ranked Keywords

B-location trail, parkway, lake, village, island, city, coast, valley, country, coast, state, province
B-organization | team, paramilitary, football, media, subsidiary, football, conservative, professional
B-product ship, game, aircraft, fitted, prototype, compatible, system

B-person politician, senator, member, chief, director, sergeant, artist, poet, friend, president
B-other language, disease, gene, award, species, use, portion, existence, syndrome

B-event tournament, annual, knockout, September, last, second, inaugural, ongoing

B-art film, music, drama, written, book, hit, song, cast, debut, comedy, album

B-building clinic, house, airport, hospital, facility, campus, opening, restaurant, laboratory

Table 1: The table shows the list of keywords found by our model for each entity. It is evident that the model is able

to generate relevant words

Recall | Fl1
0.31 0.29

Precision
0.28

Table 2: Precision, Recall and F1 score obtained for fine
grained entity classification with weak supervision

matrices X and H and the future possible work is
discussed in Section 7.

Training Time: We performed training on
Nvidia GPU. It took 3 hours to perform initial train-
ing and finding the keywords. The remaining sec-
tion of the pipeline requires finding eigenvectors
of d*d matrix which can be done within 5 min-
utes since the value of d is < 1000 and matrices
are symmetric. Finding eigenvalues and nearest
neighbors are executed in less then 5 minutes.

6 Results

In this section, we discuss the quantitative results
and the qualitative results from our experiments.

6.1 Quantitative results

Following the convention of reporting the results
for the NER task, we choose to report the precision,
recall, and F1 score. Since there are 66 classes and
each class might have a different number of sam-
ples, we report weighted scores for all the metrics
in Table 2. We observe a weighted F1 score of
0.29.

Although this score is less than what is typically
achieved in supervised settings with deep learn-
ing approaches (~ 0.7) (Ding et al., 2021), it can
be noted that we train our models in low resource
scenario with weak supervision- hence the compar-
ison is not apt. In similar settings with weak or
distant supervision, albeit for different tasks such
as relation extraction, the reported F1 scores have
been close to 0.4. (Hoffmann et al., 2011; Zeng

K 10 50
P@K | 0.4 | 0.36

100
0.38

200
0.34

300
0.34

Table 3: P@K obtained for fine grained entity classifi-
cation

Figure 1: Keyword embeddings for top keywords of
the sub-classes actor and scholar. The image on left
is embedding of keywords initially and image on right
shows embeddings of keywords after the transformation.

et al., 2015) We should be able to improve upon
the current F1 score even in this framework with
different variations of the formulation, and care-
ful feature engineering. We have seen incremental
gains through these modifications.

Another used metric for such data mining tasks
is PQK. Out of the most confident K predictions
made by the model, find the number of correct
predictions. We report the value obtained for the
metric PQK for different values of K in the table 3.
We observe that the value of PQK decreases with
increasing values of K. This is expected since the
samples predicted with higher confidence would
be more likely to be predicted correctly. This score
is calculated on the test subset represented by the
extracted entities.



6.2 Qualitative results

We discuss a few top confident samples predicted
by the model. In the sentence, "Due to the pre-
mature end of the series, the plans of actor Him-
manshoo playing dual role and the entry of Ku-
mar were dropped", the keyword learned is actor.
Both the entities (denoted by "Kumar" and "Hi-
manshoo") are correctly classified as person-actor
by the final model. For another sentence, "Klaus
( 29 October 1925 — 10 November 2015 ) was a
German-born mathematician who won the Fields
for proving Roth ’s theorem on the Diophantine
approximation of algebraic numbers", the model
correctly learns that the first entity "Klaus" is a
person-scholar. The keyword learnt in the sentence
is "mathematician"” which is also a representative
of the class "scholar.

We also discuss one failure case to bring some
light to the shortcomings of the model. In the sen-
tence "The film also featured the voice of Walter
as the reminiscing grown Sterling , Steve as his
father Willard and Pamela as his sister Theo", the
keyword selected for the entity "Walter" is sister
which is possibly a correct keyword for the class
"person” but not representative of the sub-class
"person-actor”.

In the figure 1, we show the keyword embed-
dings for top keywords of the sub-classes actor
and scholar. We observe that for the current two
classes, the keywords embeddings cluster better.
However, in most cases where keywords are com-
mon between subclasses, the clustering is not clear.

7 Conclusion and Future Work

In our work, we trained the NER on coarse labeled
dataset and extracted keywords responsible for the
classification. Then, we proposed a framework to
learn the representation of keywords and entities,
and perform fine grained classification based on
those representations. We report F1 score, and Pre-
cision @K metrics for our test subset represented by
the extracted entities. We also perform a qualitative
study to understand the success and shortcoming
of our method.

In future, we plan to experiment extensively with
learning the eigenvectors in a high-dimensional
Hilbert Space (). The idea is to use a radial basis
function kernel which projects the matrix X and H
into a infinite dimensional space. The optimization
problem should hold even in those spaces, and we
can use kernel functions to project on the resultant

eigenvectors. Due to time constraints, we couldn’t
do extensive experimentation and would also like
to do more further experiments with the current
formulation.
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