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Abstract
With the growth of research communities in
different research domains, developing an ob-
jective and reasonable way of selecting orga-
nizers as well as members to serve on program
committees has gained more importance. In
order to improve the attraction of the research
conferences, we hope to select some influen-
tial researchers to become organizers or serve
on the program committee of research confer-
ences.

Based on this motivation, we propose to for-
malize the selection of influential researchers
into a convex optimization problem based on
real-world settings which aims at maximizing
the total influence of the selected researchers
with limitations on the number of selected re-
searchers and the amount of price paid.
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1 Introduction

1.1 Motivation
In order to improve the attraction of the research
conferences, we hope to select some influential re-
searchers to become organizers or serve on the pro-
gram committee of research conferences. We hope
they can have both high academic achievement
and strong connection in the research community,
which can improve the quality of the paper review
and benefit the advertising of the conference.

∗*Authors are alphabetically ordered by first names. All
authors belong to the Department of Computer Science and
Engineering.

1.2 Related Works

Social network analysis often focus on macro-level
models such as communities, diameter, cluster-
ing coefficient, small world effect, degree distri-
butions, preferential attachment, etc; work in this
area includes (Albert and Barabási, 2002), (Falout-
sos et al., 1999), (Newman, 2003), (Strogatz, 2001).
Recently, social influence study has started to at-
tract more attention due to lots of important applica-
tions. Nevertheless, most of the works on this area
present qualitative findings about social influences
(Granovetter, 1973), (Nohria et al., 1992).

Several researches have been conducted to inte-
grate publication data set and provided expertise
researches search. For example, (Tang et al., 2008)
extracted and integrated researchers’ profile into
a data set, and then provided expertise search. In
the integration process, they utilized a probabilistic
framework to address the name ambiguity problem.
To provide expertise, they proposed three proba-
bilistic topic models to simultaneously model the
different types of information. There are also ef-
forts made to retrieve influential nodes in social
networks. For example, (Tang et al., 2009) pro-
posed Topical Affinity Propagation to model the
topic-level social influence on large network to gen-
erate topic-level social influence graphs for several
topics. However, the above works focused on prob-
abilistic models that are complicated and rely on
the data distributions which are potentially biased.

On the contrary, (Elkin et al., 2013) tried to iden-
tify influential nodes by formulating and solving
a convex optimization problem that is determin-
istic. Nevertheless, the problem was defined in a
simple way and was not suitable to the context of
influential research selection.

Similar to our work, (Bhushan et al.) tried to
optimize the administration of COVID-19 vaccines
by formulating it into a linear programming prob-



lem. However, after its proposed simplification,
the problem can be easily solved by an greedy al-
gorithm which could be much more time efficient
comparing to the solving the convex optimization
algorithm. This greedy approach serves as baseline-
1 method in the experiments section.

1.3 Contributions
The contributions and novelty of our work can be
concluded as follows:

• We formalize the selection of influential re-
searchers into a convex optimization problem
based on real-world settings in a novel way
and derive its corresponding dual problem for-
mulation and KKT conditions.

• We convert the original integer programming
problem to a linear programming problem us-
ing relaxation, and empirically showed the
tightness of this relaxation.

• We tested the proposed method on the Aminer
dataset to evaluate: (1) the effectiveness of the
selection of researchers, namely whether the
selected researchers have incredible academic
influence, (2) how k influences the runtime
of the proposed method compared to baseline
methods.

In the next section, we formulate the problem
as a linear programming problem, set constraints
based on real-world observations, and derive cor-
responding dual problem and KKT conditions. In
section 3, we show details of the experiment imple-
mentation and compare the results of the proposed
method as well as baseline approaches. In section
4, we further analyze the experimental results in
terms of both effectiveness and efficiency. Finally,
in section 5, we conclude and discuss the future
directions of our work.

2 Methodology

Given an undirected unweighted co-authorship
graph G with vector set V and edge set E, where
each node corresponds to an author. In the graph
vi ∈ V is defined as the total number of citation
of the author i, and we also have A ∈ Z|V |×|V |

2

which a binary |V |× |V | matrix denoting existence
of edge between node pairs. More precisely, if an
entry of A: ai,j = 1, then there exists an edge be-
tween node i and j, and since G is an undirected
graph, ai,j = aj,i.

2.1 Primal Problem Formulation

2.1.1 Optimization Problem
Our goal is to reasonably select influential re-
searchers who are suitable candidates to serve on
the program committee of research conferences.
By influential, it not only means the researchers
themselves have to possess excellent academic
strength or achievement, which can increase the
quality of the paper review., but they also need to
have strong connections in the research community
to benefit the advertising of the conference.

For simplicity, total citations can serve as the
proxy of the academic ability, and connections can
be evaluated by the number of coauthors. Since
we value the connections between influential re-
searchers, citations of coauthors are introduced as
weights before counting. So the sum of citations of
coauthors is chosen for measuring connections.

Based on the above intuition, we formalize the
optimization problem as maximizing a weighted
sum of two quantitative evaluation metrics:

max
x

(Av)Tx+ λ · vTx

where v ∈ R|V|. Besides, x ∈ Z|V |
2 is a binary

column vector denoting which researchers are se-
lected. By optimizing on the binary vector x, we
can eventually obtain a reasonable selection max-
imizing our objective function. The first term of
the objective function corresponds to the sum of
citations of coauthors of selected authors, and the
second term is simply the sum of citations of se-
lected authors. Additionally, λ is some predefined
non-negative balance constant.

2.1.2 Constraints
We can set constraints for the optimization prob-
lem based on some observations from real-world
settings:

• Program Committee should have a capacity k.

• To avoid the case that inexperienced young re-
searchers working in large groups are selected
because of a large second term of the objec-
tive function, their respective citations should
be no less than some lower bound l.

• Researchers with higher academic record
should be hired with higher price. Therefore a
limit of the amount of prices M should be set.



According to the above observations, we can
formalize the corresponding constraints for the op-
timization problem:

1Tx ≤ k

pTx ≤ M

eTx = 0

where p is a |V | dimensional vector in which pi =
eαvi as we assume the price grows exponentially
with the number of citations and α is a constant
scaling factor. Besides, e ∈ Z|V |

2 is an constant
binary vector that satisfies:

ei =

{
0, vi ≥ l

1, otherwise

This enforced the constraint that inexperienced
authors with citations lower than l cannot be se-
lected.

Besides, there is a hidden constraint for x since
we need it to be binary, which makes our problem
an integer programming problem. Given that the
integer programming problem is harder than lin-
ear programming, we did a convex relaxation by
converting this binary constraint to a continuous
one:

0 ≤ x ≤ 1

This relaxation, according to (Elkin et al., 2013), is
tight and the influencers (in our case are influential
researchers) can be identified by solving the linear
programming problem in an easier and efficient
way.

We can further reorganize the primal problem
with all its constraints in a classical linear program-
ming form:

max
x

((Av)T + λ · vT )x

s.t.


I
1T

pT

eT

−eT

x ≤


1
k
M
0
0


x ≥ 0

(1)

2.2 Dual Formulation
As discussed in (Seo, 2015; Gordon, 2016), the
Lagrangian formulation of the linear programming
problem (Eq. (1)) is:

L(x, y) = ((Av)T + λ · vT )x+ yT (b−wx) (2)

where

b =


1
k
M
0
0



w =


I
1T

pT

eT

−eT


Therefore the corresponding Lagrangian dual

problem is:

max
y

yT b

s.t. wT y ≤ (Av + λ · v)
y ≥ 0

(3)

2.3 KKT conditions
KKT conditions can be used to test optimality.
Based on the primal problem (Eq. (1)), we are able
to derive the corresponding KKT conditions:

wx∗ ≤ b

x∗ ≥ 0

L(x∗, y∗) = 0

y∗ ≥ 0

y∗iwi = 0 for i = 1, · · · , |V |+ 3

(4)

where x∗ and y∗ are optimal solutions returned by
the convex optimization solver. yi and wi are the
ith element of y∗ and the ith row of w respectively.

3 Experiments

3.1 Experiment Settings
The algorithms in this paper were all programmed
in Python(3.7.12), and were implemented on a
x64 machine with 12G of memory, 114G of solid-
state drive size, and both processors were Intel(R)
Xeon(R) CPU @ 2.30 GHz (64 core), the operating
system was Ubuntu 18.04.

The hyperparameters were set as follows:

• Maximum number of selected influential re-
searchers k was set to 10.

• Balancing factor λ was set to 2.

• Upper bound of total price M was set to 18.

• Lower bound of individual citations l was set
to 3,000.



Figure 1: Visualization examples of the graph data. Node size grows with:
Left: influence, Right: price

• The constant scaling factor of citations α was
set to 100,000.

3.2 Data Preprocessing
For the selection of datasets, the most direct idea
was to crawl the academic websites such as google
scholar, ACM, Digital Bibliography and Library
Project, DBLP, etc. However, strong anti-crawler
protection has made this infeasible. While in (Tang
et al., 2008), the authors provided a way to obtain
article data on DBLP. According to this method,
we finally obtained as much article data on DBLP
as possible.

After obtaining a large amount of data, our next
goal is to preprocess the data, which was extremely
time-consuming by using naive processing meth-
ods. If the dataset was reduced to a suitable size
for experiments by random selection, authors from
different domains would be selected which might
result in a sparse graph with several connected com-
ponents or even lots of individual nodes. Besides,
it does not make sense to select influencers from
authors with totally different research domains be-
cause it is almost impossible to have someone hav-
ing connection with several irrelevant domains. Ad-
ditionally, researchers from different domains are
not likely to participate in the same conference.

To solve this problem, for each article, we stored
a row for that article with all its authors, with the
primary key set to a serial number that has no real
meaning. Then for each author, we searched his
or her coauthor based on his or her articles. After
searching those coauthors, we constructed the coau-
thor table. The number of its entries in the article-
author table is 5,239,262, which is extremely large,

Metric Value
#Nodes 1670
#Edges 2447

Average Node Degree 2.93
Median Node Degree 1

Diameter (longest shortest path) 5
Average Clustering Coefficient 0.05987

Total Citations 16492291
Average Citations 16012
Median Citations 6539

Table 1: Dataset Statistics

therefore we used SQLite (Hipp, 2020) which was
already integrated with efficient large-scale data
processing algorithms.

Finally, in terms of acquiring the citation val-
ues for each author, we relied on the open source
python library, scholarly (Cholewiak et al., 2021),
available on Github, to obtain the number of cita-
tions of scholars smoothly.

Since we were using a subset of the original large
graph, the coauthors of some researchers might
become incomplete. Therefore we added those
missing neighbors (coauthors) of existing authors
only for a more accurate computation, and those
added authors (corresponding to 1-degree nodes)
would not be involved in the influencer selection as
their coauthors are incomplete.

3.3 Dataset Statistics

Table 1 gives a brief introduction of the dataset.
Also, the distribution of researchers’ prices is
shown in Fig. 2, and we visualized the distribu-



tion of price and influence of researchers on part of
the graph in Fig. 1, where the node sizes indicate
the value of corresponding influence or price.

Figure 2: Value distribution of price vector p

3.4 Baseline Methods

To demonstrate the performance of the proposed
optimization algorithm, we set up two heuristic
methods as baselines.

Since it is impossible to test every feasible so-
lution and find out the best node combination, a
straightforward solution would be to find up to k
top-ranked nodes till constraints no longer satisfied.
That is, keep selecting nodes with highest si until k
nodes are found or the total price reaches the limit
M , where si = (Av)i + λvi is the contribution of
single node can bring to the optimization goal if
selected. We name this method as baseline-1.

For a stronger baseline, we can first narrow down
the search space by heuristic rules and then fig-
ure out the best solution by brute-force searching.
Specifically, we take c nodes (c > k) with highest
si just like baseline-1 and treat them as candidate
nodes. Then we do exhaustive examinations over
all the possible combinations between those can-
didates. After filtering out the combinations with
all constraints satisfied (total price higher than M ,
no more than k nodes, etc.), we pick the one with
the highest objective score. For simplicity, we take
c = 2k. This is marked as baseline-2. Pseudocode
of this approach is shown in Algorithm 1.

3.5 Experimental Results

We conducted experiments on the collected dataset
using both our proposed linear programming

Algorithm 1: Baseline-2
Input: adjacent matrix A, citation vector V ,

price vector P , committee capacity
k, balance constant λ, citation
threshold l, budget M

Output: selected authors selected ids
c = 2k
S = AV + λV
cand ids = set()
for i = 1 · · · |V | do

if V [i] ≥ l then
cand ids.append(i)

end
end
cand ids 2 =
select top scored ids(cand ids, S, c)
max obj = 0
selected ids = set()
for k′ = 1 · · · k do

for
comb ids in all comb(cand ids 2, k′)
do

if
∑

i∈comb ids P [i] > M then
continue

end
obj =

∑
i∈comb ids S[i]

if obj > max obj then
max obj = obj
selected ids = comb ids

end
end

end
return selected ids

method (described in Section 2) and two baseline
methods (described in Section 3.4). The quanta-
tive comparison results which includes the value of
objective function (weight sum that can somehow
represent total influence of selected researchers),
number of selected influential researchers and total
price paid are shown in Tab. 2, and the visualiza-
tion of selected nodes in the graph corresponding
to three methods are shown in Figures 3 to 5.

4 Analysis

4.1 Performance Comparison

4.1.1 Effectiveness
As shown in Tab. 2, the greedy method baseline-
1 failed to balance between the goal of satisfying
the price constraint and maximizing total academic



Figure 3: Visualization of baseline-1 selection

Figure 4: Visualization of baseline-2 selection

influence. This finally resulted in a lower final
objective function value, and only 5 researchers
were selected. Another baseline method set the
number of selected researchers to k, but was just
a stronger form of the previous greedy algorithm.
Since the solution of baseline-1 has been included
in the search space of baseline-2, the result (value
of the objective function) of baseline-1 could be no
better than baseline-2.

Since there was a limit M for total price, simply
picking researchers with high individual influences
would definitely exceed the limit, so we have to
select a combination of researchers that have high
individual influences (of course with high price)
and researchers with relatively lower individual
influences (but having much lower price). The
aforementioned baseline algorithms were not suf-

Figure 5: Visualization of the proposed selection

Method Obj. Num. Sel. Price
baseline-1 1.04e7 5 17.06
baseline-2 1.44e7 9 16.63
proposed 1.52e7 10 17.85

Table 2: Quantitative Comparison Results

ficient to tackle this problem properly, resulting
non-optimal selections.

In contrast, as we would state in section 4.3, our
proposed algorithm is able to maximize the objec-
tive function under the constraints and converge to
the optimal solution. From the perspective of ei-
ther quantitative (having higher objective function
value in table 2) or visual comparison (establish-
ing a broader connection in Figures 3 to 5), our
proposed method outperformed other two baseline
methods.

4.1.2 Scalability

As the limitation of selected researchers k may vary
based on different needs in real-world scenarios,
we conducted experiments to examine how does the
runtime of algorithms changes with k. As shown in
Fig. 6 and Tab. 3, the runtime of proposed method
and baseline-1 stay at a very low level, but the
runtime of baseline-2 grows at an extremely high
rate with k. By analyzing Alg. 1, we can derive
that the time complexity of baseline-2 regarding k
should be O(22k−1). In comparison, the runtime
of the proposed method using convex optimization
and the naive greedy approach baseline-2 are suf-
ficiently low and does not change much with k.



k 7 8 9 10
baseline-1 6.1ms 5.0ms 4.4ms 5.4ms
baseline-2 5.2s 19.9s 1min 9s 3min 2s
proposed 75.8ms 72.3ms 76.4ms 79.3ms

Table 3: Runtime Comparison

Figure 6: Runtime Comparison

4.2 Tightness of Relaxation

The histogram (Fig. 7) shows the distribution of the
value in solution vector x, and this indicates that
the values are either 0 or 1 in x, which eventually
makes x a binary vector. Therefore the relaxation
described in Section 2 is empirically proven to be
tight enough in our context.

Figure 7: Value distribution of solution vector x

4.3 Optimality
Since our problem was a linear programming prob-
lem, there would always exist an optimal solution
as long as the feasible region exists. By selecting
only one researcher with price under limit we can
get a valid solution (though might not be optimal),
therefore the feasible set is obviously non-empty.
We tested the optimality based on the KKT condi-
tions described in Section 2.3, and all the condi-
tions are satisfied using the returned x∗ and y∗.

5 Conclusion

In this work, we developed an efficient algorithm
for program committee selection. By introducing
the citation and coauthor information, we formu-
late the problem as a convex optimization problem
which maximizes academic influence of selected
researchers. Through experiments under different
settings, we show that the proposed convex opti-
mization algorithm outperforms rule-based base-
line. The results are also visualized and analyzed
for a better understanding of the unseen pattern of
research communities.

In the future, more factors such as h-index can
be taken into consideration while formulating the
problem. Besides, the influence of researchers can
be further extended to two-, three- or even more
hops neighborhoods in the graph, which can bene-
fit obtaining more reasonable selections. Further-
more, this formulation of influence can be applied
in other social network-related influencer selection
problems with high efficiency and flexibility. The
setting of constraints based on real-world observa-
tions might motivate the improvement of other ex-
isting works regarding academic social networks.
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