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I. TEAM ASSIGNMENT
Tianrui Wang is responsible for introduction, conclusion and

future works part. Hao Li is responsible for the state of the
art method A, Sihan He is responsible for the state of the
art method B, Yi Zhang is responsible for the state of the art
method C. Hao Li, Sihan He and Yi Zhang together finish the
statement of problem part.

II. INTRODUCTION
A. MOTIVATION

Digital images play an important role in our daily life, such
as satellite television, computer resonance imaging, and in
research and technology. Data sets collected by image sensors
are contaminated with noise due to imperfect instrumentation,
while disturbed natural phenomena can also degrade the qual-
ity of data of interest. On the other hand, the transmission and
compression of images also introduce noise. Therefore, image
denoising is a necessary and primary step in image analysis.
It is necessary to employ some effective image denoising
techniques to prevent this type of corruption in digital images.

B. PREVIOUS WORKS

A wide range of approaches have been proposed to provide
supplementary information for estimating the denoised image.
Depending on the image information used, the approaches can
be categorized into internal (use solely the input noisy image)
and external (use external images with or without noise)
denoising methods. In addition, some work has shown that
the combination or fusion of internal and external information
can lead to better denoising performance. [1] The category of
implicit methods adopt priors of high quality images implic-
itly, where the priors are embedded into specific restoration
operations. Such an implicitly modeling strategy was used in
most of the early image denoising algorithms. [2], [3] Based
on the assumptions of high quality images, heuristic operations
have been designed to generate estimations directly from the
degraded images. For example, based on the smoothness as-
sumption, filtering-based methods have been widely utilized to
remove noise from noisy images. [4] Although the image prior
is not explicitly modeled, the prior for high-quality images is
considered when designing filters to estimate high-resolution
images. Such implicitly modeling schemes have dominated
the area of image denoising for decades. To generate the
piece-wise smooth image signal, diffusion methods have been
proposed to adaptively smooth image contents. By assuming
that the wavelet coefficients of natural image are sparse,
shrinkage methods have been developed to denoise images
in wavelet domains. [5] Based on the observation that natural

image contains many repetitive local patterns, the non-local
mean filtering approach has been suggested to profile from
the image non-local self-similarity (NSS) prior. [6] Although
these simple heuristic operations have limited capacity in
producing high-quality restoration results, these studies have
greatly deepened researchers’ understanding of natural image
modeling. Many useful conclusions and principles are still
applicable to modern image restoration algorithm design.

C. INTENDED CONTRIBUTIONS

We will first establish the problem by analyzing the three
aspects of convex problem–primal, dual, KKT conditions and
relate it to the image denoising topic. We will survey state-
or-art image denoising methods in this paper. Then we will
propose three state-of-art algorithms with different approaches.

Each paper has its own novelty. For the HSI paper, it
converted denoising problem into a multi-objective optimiza-
tion problem. This approach reflects the optimization and
complementary capabilities of the multi-angle information
contained in noisy hyperspectral remote sensing images. For
the second paper,They defined a new transforms depended
tensor rank and the cor- responding tensor nuclear norm. Then
we solve the TR-PCA problem by convex optimization whose
objective is a weighted combination of the new tensor nuclear
norm and l1-norm.

For our work, firstly, we want to explore one algorithm -
multi-objective low-rank and sparse image denoising frame-
work that ensures effective optimization and can solve the
problem of inaccurate sparse and unstable modeling results
due to convex relaxation and sensitive regularization parame-
ters when restoring clean hyperspectral images.

Secondly, we aim to review a general image denoising
algorithm which recovers the underlying low-rank and sparse
components with high probability and allows to use any
invertible linear transforms.

Last but not least, in order to denoise images faster and
more stable than curent gradient descent algorthms, we are
employing Chambolle’s Dual methods to minimize our image
denosing objective.

D. ORGANIZATION OF THE PAPER

In this paper, we follow the format in the guideline. Our
work is largely divided into four main sections. The first
section is Statement of the problem. In this section, the
problem is described in mathematical form, including its
primal problem, the dual problem and the KKT conditions.
Then, in the Intended Approaches section, different image
denoising methods are surveyed in detail. The Conjectured



Results section describes and compares the results of various
denoising methods. In the end, papers we surveyed are listed
in the References section.

III. STATEMENT OF THE PROBLEM

A noised image f can be viewed as the sum of an unknown
ideal image u and additive white Gaussian noise with mean 0
and variance σ2. Therefore, we need to compute the unknown
clean image u which satisfy the constraint,

∥u− f∥22 ≤ |Ω|σ2

To solve this problem, we can represent the constraint as
minimize g(u), as:

min
u

g(u)

s.t. ∥u− f∥22 ≤ |Ω|σ2 .

Using Lagrange multiplier, it can be rewrote as:

min
u

g(u) + λ( ∥u− f∥22 − |Ω|σ2 )

There is a relation between λ and σ and λ is determined
by σ. Therefore, once λ is known, the above problem can be
rewrote as:

min
u

g(u) + λ ∥u− f∥22

Then consider the constraint function g(u). Usually, the
constrain is about the gradient of the image u, for example:

g(u) =

∫
Ω

|∇xu|dx

A. PRIMARY

After the above analysis, the primal problem of image
denoting can be derived as :

min
u

∫
Ω

|∇xu|2dx+ λ ∥u− f∥22

B. DUAL

The dual form can be wrote as:

∫
Ω

|∇xu| = max
ω∈C 1

O (Ω),|ω|≤1

∫
Ω

∇xu · ω

= max
|ω|≤1

∫
Ω

−udivω

Therefore, the dual problem of image denoting is:

min
u

max
ω∈C 1

O (Ω),|ω|≤1

∫
Ω

−udivω + λ ∥u− f∥22

With the help of min-max theorem, we can first

min
ω∈C 1

O (Ω),|ω|≤1

1

2
∥divω + 2λ f ∥22

Then, compute u as u = f + 1
2λ

C. KKT CONDITIONS

According to the defnition of Karush-Kuhn-Tucker
Condition of the problem are as follows:

∇uL = ∇g(u)+λ∇(∥u− f∥22 − |Ω|σ2 ) = 0

∥u− f∥22 − |Ω|σ2 ≤ 0

λ ≥ 0

λ( ∥u− f∥22 − |Ω|σ2 ) = 0

IV. STATE-OF-THE-ART METHODS

In this section, we will investigate into three state of the art
convex optimization approaches on image denoising.

A. Multi-Objective Low-Rank and Sparse Model for Hyper-
spectral Image Denoising

Due to the inevitable existence of Gaussian noise and sparse
in the process of data representation, the quality and applica-
tions of hyperspectral images (HSIs) is degraded and limited.
Traditionally, low-rank and sparse matrix decomposition meth-
ods are usually leveraged for clean HSIs restoration. However,
the optimization of the l0-norm for the sparse modeling is
a non-convex and NP-hard problem. Convex relaxation and
regulation parameters, which are usually used for optimizing
the l0-norm for spare modeling, could often lead to inaccurate
results. In order to address the issue, an accurate multi-
objective low-rank and sparse denoising framework [7] was
proposed for accurate HSIs denoising. It modeled l0-norm as
sparse noise, and optimized it with an evolutionary algorithm.
Therefore, this image denoising problem could be converted
into the problem of multi-objective optimization with the data
fidelity term, the sparse term, and low-rank term optimized
simultaneously, without sensitive regularization parameters.

1) INTENDED APPROACHES: The overall framework of
the proposed accurate multi-objective low-rank and sparse
model (AMOLRS) is shown as Fig. 1, which mainly involves
three stages: Preprocessing for the HSI, Multi-Objective Mod-
eling for AMOLRS, and Model Optimization for AMOLRS.



Fig. 1. The basic framework of AMOLRS. [7]

a) Preprocessing for the HSI: For HSIs denoising, the
sparse noise image matrices and low-rank clean HSI are first
encoded into the solution individuals, which then form a
population to execute the evolutionary operations. In order to
solve the problem that the length of the solution and the search
space may be too large to be optimized and searched, a block-
based preprocessing is applied, which is shown as Fig.2. We
can see, the original size of the cube is c× r×d, and the size
after processing is u× u‘× d.

Fig. 2. The block-based preprocessing. [7]

b) Multi-Objective Modeling for AMOLRS : Since a set
of trade-off solutions can be generated by the multi-objective
evolutionary algorithms (MOEA) for balancing the multiple
objective functions, and the MOEA is also able to deal with
the NP-hard and non-convex problem [8]. Thus, MOEA can be
introduced to solve the low-rank and sparse image denoising of
HSIs problems. By introducing MOEA, the l0-norm for sparse
noise could be considered, and the sensitive weight parameters
don’t need to be preset manually. Therefore, we can represent
this problem of image denoising as:

Where ∥O − L− S∥2F is the data fidelity term, and α is a
weight to balance the SSTV terms and data fidelity.

c) Model Optimization for AMOLRS: The first step is
for the individual encoding and population initialization. For
the individual encoding part, the low-rank cube matrix and
sparse noise cube matrix both get encoded in an individual
for one path cube from the original HSI cube. For the initial
values of the individual, the TV/l2-norm method [9] is applied
to obtain low-rank image matrix and initial sparse noise

image matrix. A population means a solution set, where NP
individuals are constructed, in which one individual is a vector
representation for the sparse noise and low-rank clean images
from the noisy HSIs. The population initialization could be
represented as: where {Si&Li}‘ is the result from TV/l2-

norm method, {Si&Li} is the initialized individuals {S̄i&L̄i}‘
is the mean value, δ is the standard deviation, and ξ is
0.5. Then Evolutionary Reproduction is utilized for individual
reproduction in the population. Due to the complexity of for
the optimization of multi-objective denoising, a Gaussian local
search process and the DE algorithm are employed. To search
for the “promising regions” in the image, solutions with good
fitness are considered to be located after the long-distance
rough search, and the most promising can be then found
through region local search by a short-distance search. The
process can be represented as:

where CR∈[0,1] is crossover rate, jrand is randomly
selected from 1 to 2 × d × u × u, F is a factor for scaling,
{S&L}r1, {S&L}r2, and {S&L}r3 are three random
individuals, and {Si,j&Li,j}Ω is a new individual.

In order to reduce the length of the individual, a subfitness-
based individual evaluation and updating strategy is leveraged
for the multi-objective denoising. To get the SSTV term, the
horizontal TV (HTV) and vertical TV (VTV) are calculated.
Therefore, the SSTV + can be representd as: Subsequently,



multi-objective evaluation and population should be updated
based on the subfitness. The updating process is as follows:
First, parent individual and offerspring individual are sep-
arately denoted as: Sk&Lk and S+

k &L+
k . For each band,

d subsitness are calculated. SubFit{Sk(i)&Lk(i)} is the
subcomponent between Sk(i)&Lk(i). After comparing all the
subcomponents, the new individual can be obtained as:

Finally, all the above steps are repeated until the number
of generations is less or equals to the maximum number of
generations. The stopping conditions are listed as follows:

2) CONJECTURED RESULTS: To verify the performance
of the proposed approach, seven traditional and advanced
methods was compared: the TV/l2-norm method [9], the
BM4D method [10], the LRMR method [11], the LRTV
method [12], the SSTV method [13], a fast hyperspectral
image denoising and inpainting method based on low-rank
and sparse representation (FastHyDe) [14], a TV regularized
low-rank tensor decomposition method (LRTDTV) [15], a
subspace-based nonlocal low-rank and sparse factorization
method (SNLRSF) [16], a mixed Gaussian and sparse noise re-
duction method (HyMiNoR) [17], and the LLRSSTV method
[18]. Besides, l1 norm was also used for sparse modeling as
comparison method to prove the effectiveness of using the
l0 norm for accurate sparse noise modeling. The comparison
results are shown in Fig.3. We can see from the figure that
the proposed method achieved the best overall performance
compared to all other methods in terms of most metrics.

B. Transforms based Tensor Robust PCA
Motivated by the linear transforms based tensor-tensor

product and tensor SVD, Canyi Lu [19] proposed a trans-
forms based tensor robust PCA fromework to solve the
corrupted low-rank tensors recovery problem through convex
optimization. First, a new transforms depended tensor rank
and corresponding tensor nuclear norm is defined. When
the invertible linear transform can meet the requirement of:
LTL = LLT . Subsequently, the Tensor Robust Principal
Component Analysis (TRPCA) problem is solved with convex
optimization whose objective is a weighted combination of the
new tensor nuclear norm and l1-norm, as follows: min

L,ε
⟨L⟩∗ +

λ⟨S⟩1, s.t.X = L + S.Compared to traditional methods, this
new TRPCA problem is more general for supporting any
invertible linear transforms.

1) INTENDED APPROACHES: First, it defines new tensor
nuclear norm which is induced by the t-product under linear
transforms. T-product equals to the matrix-matrix product un-
der the discrete Fourier transform. Then the frontal-slice-wise
product is defined as R = P ⊙ Q. Let Ā = AX3Fn3. where
Fn3 means the Discrete Fourier Transform (DFT) matrix, and
X3 represents the mode-3 product. We define /barA as:

where bdiag is an operator mapping. Let B ∈ Rn2×l×n3,
and A ∈ Rn1×n2×n3. Therefore we can get the t-product as:



Fig. 3. Comparison results [7]

A more general definition of t-product is proposed utiliz-
ing any invertible linear transform for this discrete Fourier
transform. In this work, the linear transform is considered as:
L : Rn1×n2×n3− > Rn1×n2×n3.

Subsequently, the convex tensor nuclear norm is defined
by inducing the t-product under L. First, assumption on L is
given as: LTL = LLT = lIn3, where l ¿ 0. Then, ⟨A,B⟩ =
1
l ⟨Ā, B̄⟩. ∥A∥F = 1√

l
∥Ā∥F

Therefore,the definition can be reached that for L be an
invertible linear transform, and A = u∗LS∗Lv

T be the t-
SVD of A, then the tensor nuclear norm of A under L can
be represented as: ∥A∥∗ := ⟨S, I⟩ = 1

l ⟨Ā⟩∗.
2) Conjectured results: we can format any color image of

size n1×n2 to a tensor n1×n2×n3×n4, and n3 = 3. 100 color
images are randomly selected from the Berkeley segmentation
dataset [20]. 10% of pixels is set to random values between
0 and 255. Three comparison models are utilized, the RPCA
[21], SNN [22] and TRPCA [23]. In this experiment, DCT
and ROM are used as the transforms in the new TRPCA
method, which is defined as TRPCADCT and TRPCA-ROM,

Fig. 4. Performance comparison for image recovery on some sample images.
(a) Original image; (b) observed image; (c)-(f) recovered images by RPCA,
SNN, TRPCA, and our TRPCA-DCT, respectively [19]

respectively. The Peak Signal-toNoise Ratio (PSNR) value
[23] is used to evaluate the recovery performance. As can be
seen from Fig. 4, the proposed TRPCA-DCT has achieved the
best performance compared to all other comparison methods.

C. Chambolle’s Dual Method

Inspired by the concept of total variation [24], Antonin
Chambolle came up with a dual method which is faster to
minimize the total variation [25], and performs better in its
application of image denosing.

As we have described in the Statement of the Problem,
the constraint function is usually expressed as the gradient
of image, then the gradient will be ∇u, whose expression is
below:

for i, j = 1,2,3,· · · , N.
The discrete total variation will be:

where
With the help of divergence theorem ∇·(fv) =

(∇f)·v+f(∇·v), we can rewrite J(u) as follows:



where the second equality to last comes from the fact that is
compact support, which means that is zero outside a compact
set. Since J is one-homogeneous, the dual problem of J(u) is:

1) INTENDED APPROACHES:
a) Chambolle’s projection algorithm with fixed λ:

Chambolle proposed the algorithm to solve:

given g ∈ RN×N and λ > 0. The Euclidean norm ∥·∥ is
given by ∥∥2 =

∑N
i,j=1 u

2
i,j .

Its first order optimality condition satisfies

where ∂J(u) is the subdifferential of J(u).
Then we have:

Using the convex optimization properties, we have u ∈
∂J ( g−u

λ ), therefore we have:

This implies that w = g−u
λ is the minimizer of

Therefore, the initial minimization problem can be reduced
to solve for

∏
K

g
λ . Since λ > 0, the minimizer w is also the

minimizer of

This means that we can solve for
∏

λK g to get the solution,
and u∗ = g −

∏
λK g .

Since the closed convex set K is given by:
{div p : p ∈ RN×N × RN×N , |pi,j | ≤ 1}
therefore, calculating

∏
λK g is equivalent to solve:

min {∥λdiv p − g∥2 : p ∈ RN×N × RN×N , |pi,j |2 ≤ 1}

The KKT conditions satisfy

After analysing the above expressions and conditions,
Chambolle’s algorihtm with fixed λ can be expressed as
follows:

Choose τ > 0, and let inital value p0 = (0 , 0 ), where 0 is
an N by N zero matrix, and then

b) Chambolle’s projection method with optimal λ: With
the assumption that observed image g is the addition of a
random Gaussian noise with variance σ2 and an image u with
little oscillation, Chambolle changed the optimization problem
as:

Chambolle choose λ0 arbitrarily, and let v0 = λ0divp, where
p is computed with the first Chambolle fixed λ algorithm.
Suppose the input λ = λ0, and f0 = ∥v0∥, then for any n ≥ 0,
the iteration algorithm can be described as follows:

we can get the output u = g − λdivp if ∥fn+1 N2σ2∥ ≤
tolenrance. During each iteration, p is computed with the first
Chambolle fixed λ algorithm.

2) CONJECTURED RESULTS: The first group(Fig.5) of
images show the results of the Chambolle’s projection algo-
rithm with fixed λ with = 0.25 and = 0.05.

Fig. 5. Chambolle’s projection algorithm with fixed λ. [26]

The second group(Fig.6) of images show the results of the



Chambolle’s projection algorithm with optimal λ with = 0.2,
and = 0.1.

Fig. 6. Chambolle’s projection algorithm with optimal λ. [26]

V. CONCLUSION

The applications of image denoising have been widely
used in people’s everyday lives, and the search for efficient
image denoising algorithms is still a challenge problem for
researchers.

In this article, we investigated into image denoising prob-
lems via convex optimization, and analyzed three state of the
art methods : Multi-Objective Low-Rank and Sparse Model,
Transforms based Tensor Robust PCA and Chambolle’s Dual
Method both from theoretical perspective and numerical re-
sults. Since different noises may require different denoising
methods, the analysis can be useful in exploring new image
denoising methods.

This project not only significantly improved our understand-
ing and skills in convex optimization, but also ignited our
passion in image denoising and computer vision.

VI. POSSIBLE FUTURE WORKS

As we researched on image denoising problems, we found
that one difficulty lies in how to extract the data presentation,
in which machine learning and deep learning methods has
achieved great performance. In this sense, machine learning
and deep learning methods might be more widely exploited in
solving image denoising problems. But one disadvantage of
deep learning is that there may not existing so many image
pairs in real life to train the deep learning models. Therefore,
deep learning-related methods may not be sufficiently effec-
tive. In this aspect, exploring more advanced methods that
do no need so many image pairs for training will be a hot
direction of image denosing.

But there still exist other obstacles in real image denosing,
one of which is that the real noise is much more complex
and diverse than that in experiments. In this situation, the
thorough evaluation of a denoiser will be a hard task. In in-
camera pipeline, there are components like color demosaicing,

color transform, compression, etc that may lead to noised
images. Therefore, how to handling these external and internal
conditions is also another topic of image denosing.
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