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ABSTRACT

In this work, we tackle the problem of instrument style
transfer. More concretely, the task consists of convert-
ing an input piano audio clip to a guitar audio clip that
has the same musical properties (pitches/notes) as the pi-
ano audio clip, but sounds like a guitar. To solve this,
we first create a dataset of piano and guitar audio clips.
We then propose three approaches to solve the problem:
convex optimization, a waveform-based neural network,
and a spectrogram-based neural network. Through our
experiments, we find that all of these methods are ca-
pable of outputting reasonable guitar audio clips given
a piano audio clip, with the spectrogram-based neural
network performing the best on our human evaluation
metric. All source code used for our experiments can
be found at https://github.com/HeidiCheng/
wi22-203-FinalProject/

1. INTRODUCTION

1.1 Motivation

When a music producer is writing a melody, they often try
having several different instruments play it before deciding
which instrument fits the song the best. Sometimes there
may be a specific sound from another song that the pro-
ducer wants to use, however they are unsure how to recre-
ate it using a synthesizer. Instead of trying to recreate it,
what if the producer could just convert the sound from a
basic instrument to the sound of some other instrument?
Towards a solution to this problem, we tackle the simpler
task of instrument style transfer using paired data.

1.2 Previous Works

In the past few years, style transfer has become quite pop-
ular in the computer vision community. Recently, re-
searchers involved in music have begun to apply these
techniques to music. Some examples of this are in [1, 2]
where the authors use CycleGAN-inspired techniques [3]
to perform transfer from one instrument to another with un-
paired audio samples. Additionally, Bitton et al. proposed
using a VAE for one-to-many instrument style transfer us-
ing unpaired audio samples [4]. Unlike these works, we
use paired audio samples, and find that this allows us to
solve this task in a simpler way, resulting in a more stable
training process than something like a CycleGAN or VAE.

Figure 1. Visualization of the two kinds of audio repre-
sentations we work with – (top) waveform (bottom) spec-
trogram

We even find that convex optimization methods can give
decent results in this setup.

1.3 Our Contributions

We try out three different methods for this task. First, we
frame the problem as a convex optimization one and pair
the results from a convex solver with gradient descent to
learn a generalized function that transforms a piano sound
to a guitar sound. Since this does not produce strong re-
sults, we instead choose to find a closed form least-squares
solution to use instead. Second, we design and train a neu-
ral network that uses the raw audio sampled at 44100 Hz as
input and output for our network and learn this conversion.
Lastly, we design and train a neural network that uses the
Short-time Fourier Transform of each audio clip sampled
at 22050 Hz as input and output of the network.

1.4 Organization

The rest of our paper is organized as follows. First we
discuss the statement of our problem in Section 2. Then
we talk about the dataset we use in Section 3. After that
we present our methods in Section 4. Finally, we discuss
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the results of our experiments in Section 5.

2. STATEMENT OF THE PROBLEM

2.1 Problem setup

The problem that we solve is converting an audio clip x of
a piano to an audio clip b of a guitar, where x,b ∈ Rn. To
do this, we want to solve for a function F, such that F(x) =
b. For our approach to solve this problem using convex
optimization, we have F be defined as a matrix A ∈ Rnxn.
In our neural network approaches mentioned later, F is the
neural network.

Given our dataset of 5000 paired piano and guitar audio
clips, we choose to use 4000 to learn this matrix A, and use
500 each for validation and testing. In our initial attempt
for which we describe the primal and dual formulations,
we constrain A to be a diagonal matrix. The objective we
optimize is the squared norm of the error of an individual
audio clip. Since the convex solvers struggle with solving
AX = B where X and B are matrices corresponding to the
whole training set, we individually solve the optimization
problem for each sample, giving us 4000 different A matri-
ces, and then find a convex combination of these matrices
M that minimizes the Mean Absolute Error of the valida-
tion set using gradient descent.

2.2 Primal formulation

minA||Ax − b||22
s.t.||Ax||22 ≤ ||b||22

where A is a square, diagonal matrix, and A ∈Rnxn, x, b
∈Rn

2.3 Dual formulation

Lagrangian:

L(A, λ) = ||Ax − b||22 + λ(||Ax||22 − ||b||22)

L(A, λ) = ||Ax − b||22 + λ||Ax||22 − λ||b||22
Rewrite first term:

L(A, λ) = ||Ax||22+||b||22−2 < Ax,b > +λ||Ax||22−λ||b||22
L(A, λ) = (1 + λ)||Ax||22 + (1− λ)||b||22 − 2 < Ax,b >

L(A, λ) = (1+λ)(Ax)T (Ax)+(1−λ)(bT b)−2 < Ax,b >

Let Ax = < [a1a2. . . ..an], x >= a1x1 + a2x2 + . . . anxn,
where ai is the nonzero element of the ith column vector
of A:

L(A, λ) = (1 + λ)(a1x1 + a2x2 + ...anxn)
T

(a1x1 + a2x2 + ...anxn)

+(1− λ)(bT b)− 2(a1x1b1 + a2x2b2 + ...anxnbn)

Gradient w.r.t. arbitrary ai:

∂L

∂ai
= (1 + λ)2aix

2
i − 2xibi = 0

Solve for ai:

ai =
bi

(1 + λ)xi

Plug back into Lagrangian:
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Dual:

maxλg(λ)

s.t. λ ≥ 0

2.4 KKT Conditions

1.) ||Ax||22 ≤ ||b||22
2.) λ ≥ 0
3.) λ(||Ax||22 − ||b||22) = 0
4.) dL

dai
= (1 + λ)2aix

2
i − 2xibi = 0

3. DATASET

To create our dataset consisting of piano and guitar sam-
ples, we first created an audio sample for each possible
note that a guitar and piano can play, resulting in 45 audio
clips that are 3 seconds long for each instrument. Then we
used Pydub [5], an API for manipulating audio, to create
audio samples of chords, a musical term meaning multiple
notes play at once. Since a guitar can play up to 6 notes at
once, we had chords ranging from having 2 notes playing
at the same time up to 6, and had 1000 of each. In total,
this left us with 5000 paired audio samples of piano and
guitar.



Error Metrics

Models Mean Absolute Error (MAE) Mean Squared Error (MSE) Human Sound Human Pitch

ConvexOpt 849.25 47.07 1.85 2.65
WavNet 620.33 32.30 2.7 2.7
SpectroNet 6007.79 2261.22 3 3

Table 1. Performance of our three approaches on the test set. The best result of each metric is bolded.

3.1 Data representations

Audio samples can be represented in several different
ways. Due to this, we decided to try out multiple different
representations to see if there is any significant differences
in the performance of our systems. In our experiments, we
tried out two different ways to represent audio: waveform
and spectrogram.

The waveform representation of audio is relatively
straightforward as it is the format that audio is stored in
lossless file types such as WAV, FLAC, etc. Essentially,
these formats just store the amplitudes at each sample of
the audio. In the case where the sample rate of the au-
dio clip is 44.1 kHZ, it would store 44100 amplitudes for
each second of an audio clip. For our experiments we used
sample rates of 22050 and 44100 for our neural network
models and 3000 for convex optimization methods due to
the convex solver having trouble with extremely high di-
mensional matrices and vectors.

The spectrogram representation of audio is a 2-
dimensional representation of sound in terms of frequen-
cies and time, showing how the amplitudes of different fre-
quencies change over the course of an audio clip, as shown
in Section 1. To compute this, we use the discrete Short-
time Fourier Transform as in Equation (1). The parameters
we use for this are a sample rate of 22050 Hz, frame size of
2048, and hop size of 512. To reconstruct a waveform rep-
resentation from the spectrogram, we use the Griffin-Lim
algorithm.

spectrogram = ||STFT (audio_clip)||
audio_clip = GL(spectrogram)

(1)

4. METHODS FOR INSTRUMENT STYLE
TRANSFER

4.1 Convex Optimization with Gradient Descent

Our initial approach using convex optimization was to
solve the problem we mentioned in Section 2.2.

minA||Ax − b||22
s.t.||Ax||22 ≤ ||b||22

where A is a square, diagonal matrix, and A ∈ Rnxn,
x,b ∈ Rn

More specifically, we obtained a diagonal matrix A that
optimized the problem above for each piano-guitar pair in
the training set, a total of 4000. Let xv and bv be piano
and guitar audio clips from the validation set. We then

used gradient descent to find the weights c1, c2, ..., cn that
minimized the square error between Mxv and bv for all
validation samples, where M = w1A1 + w2A2 + ... +
w4000A4000 and w = Softmax(c), thus

∑
i wi = 1.

In other words, M is a convex combination of the 4000 A
matrices that were obtained from the training samples.

While this idea made sense to us intuitively, when we
implemented it in practice, the results were very poor and
the learned matrix M would just convert each piano audio
clip to a very noisy audio clip completely different from
the ground truth guitar audio clip.

4.2 Convex Optimization Closed Form

After the previous approach mentioned above gave us poor
results, we instead attempt to learn an A matrix which min-
imizes the objective function stated in Equation (2)

||AX − B||22 (2)

where A ∈ R9000x9000, and X,B ∈ R9000x4000. A cor-
responds to a transformation matrix, X corresponds to a
matrix of the piano training set, and B corresponds to a
matrix of the corresponding guitar training set.

The goal is to find an A matrix that when multiplied
with the X matrix (the training set of piano audio) will
result in a matrix that is the closest to the B matrix (the
desired guitar audio).

Since the convex solver fails to solve this problem due
to the very high dimensionality, we instead look for a
closed form solution. Additionally, in contrast to the ma-
trix mentioned in Section 4.1 which was a diagonal matrix,
we let A be an arbitrary matrix in this case.

Once we have our matrix A, we use it to transform our
individual piano test audio clips into their corresponding
predicted guitar audio clips.

4.3 Objective Function

In the next two subsections, we will discuss our neural net-
work approaches to this problem. The objective function
we chose to use for our neural models is Mean Absolute
Error (MAE). For WavNet, we calculated it with respect
to the waveforms. For SpectroNet, we calculated it with
respect to the spectrograms.

4.4 Waveform Neural Network (WavNet)

We design two models using waveform as input to learn
the instrument transformation. The first model has one lin-
ear layer as the instrument transformer. However, since



Figure 2. Architecture of Waveform Model

the size of parameters for a linear layer which uses origi-
nal size waveform as input cannot fit into our computing
memory, we downsample the waveform with 5000 as the
new sample rate using API from torchaudio [6]. Although
the model is simple and effective for the transformation, it
requires approximately 2.6 GB space for saving one check-
point; that is to say, significant amount of parameters is
needed in this model.

To deal with this problem, for the second model, we
add an encoder and a decoder to reduce the dimensionality
of an audio file sampled at 44100 Hz before performing
any transformations. Since the transformation of two in-
struments is similar to sequence-to-sequence translation in
Natural Language Processing, we use the Long Short-term
Memory [7] architecture to encode and decode sequences,
which is well-suited to process time-series data. For the
transformation layer, between a convolutional neural net-
work and linear model, the linear model had a better per-
formance in our case. Architecture of our final waveform
model is shown in Fig. 2. Although the second model
seems more complex than the first model, the size of its
checkpoint is actually 30 times smaller than the first model.

4.5 Spectrogram Neural Network (SpectroNet)

For our spectrogram neural network, we took inspiration
from the famous U-net architecture [8] that was used on
images since a spectrogram is somewhat like a visual rep-
resentation of audio. As an encoder, we use four convolu-
tional blocks with pooling to downsample the spectrogram.
Then we perform a transformation on the sampled spectro-
gram using four convolution layers. Finally we upsample
to return to the original sized spectrogram. The architec-
ture can be seen in Fig. 3.

In addition to learning to convert a piano clip to a guitar
clip, we found that by adding a channel to the spectrogram
input to the neural network, we could condition the model
to either convert piano clips to guitar clips or guitar clips to
piano clips, a simple way to have the model do both as op-
posed to needing to train two completely separate models
to achieve the following.

5. EXPERIMENTS

5.1 Implementation Details

5.1.1 Convex Optimization Closed Form Approach

We use 4,000 sample pairs corresponding to our training
set to solve for the A matrix. To load each audio clip with

Figure 3. Architecture of Spectrogram Model

a sample rate of 3000, we use librosa.load [9] and arrange
our 3 second piano clips into a 9000 by 4000 matrix, X.
Each column of matrix X contains 9000 feature values that
are associated with a singular piano sample’s WAV audio
file. There are 4000 columns in matrix X, because we have
4000 piano samples in our training set.

Then, we repeat the same process but with the 4000
guitar samples in the training set in order to create ma-
trix B. Similar to matrix X, matrix B is a 9000 by 4000
matrix, where each column is associated with a singular
guitar sample and contains the 9000 feature values associ-
ated with that guitar sample’s WAV audio file.

We then want to solve Equation (2) to find the A ma-
trix that minimizes the objective function L seen in Equa-
tion (3). To do this, we first take the derivative of the objec-
tive function with respect to A. We then set the derivative
equal to zero and solve for A. We find that the optimal so-
lution for A is the matrix B (guitar samples) multiplied by
the pseudo inverse of X (piano samples). A will be a 9000
by 9000 matrix. For the notation below in Equation (3)
and Equation (4), xk refers to the kth column of a matrix
X, and xk refers to the kth row of a matrix X.

L =

4000∑
k

||Axk − bk||22

=

4000∑
k

(Axk − bk)T (Axk − bk)

=

4000∑
k

xkTATAxk − xkTATbk − bkTAxk+

bkTbk

=

4000∑
k

(

9000∑
i

< ai,x
k >2 −2

9000∑
i

< ai,x
k > bik+

bkTbk)

(3)



Chord Size (Number of Notes Playing Simultaneously) MAE

Models 2 3 4 5 6

ConvexOpt 596.35 751.24 840.82 973.59 1048.19
WavNet 365.80 480.77 623.51 721.76 871.65
SpectroNet 3870.36 5180.48 6461.79 6553.31 7698.20

Table 2. Comparison of our three approaches evaluated on different chord sizes

∂L

∂aij
=

4000∑
k

(< ai,x
k >2 −2 < ai,x

k > bjk)

=

4000∑
k

(2aijxjk(< ai,x
k > −bjk))

∂L

∂aij
= 0

=

4000∑
k

(2aijxjk(< ai,x
k > −bjk)) = 0

=
4000∑
k

(< ai,x
k > −bjk) = 0

= aiX = bj

= ai = bjX
†

(4)

This gives us the following matrix A that minimizes the
expression

∑4000
k ||Axk − bk||22.

A =


a1
a2
.
.
.

a9000

 =
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b1X

†

b2X
†

.

.

.
b9000X

†

 = BX†

Now that we have the A matrix, we are able to gener-
ate predicted guitar samples. To do this, we can just put
a single piano sample into a 9000 by 1 vector by making
use of librosa.load with a sample rate of 3000. We then
multiply A and that vector together in order to get the pre-
dicted guitar sample. Finally we use the scipy.io.wavfile
library [10] in order to create the WAV file of the predicted
guitar sample.

5.1.2 Waveform Neural Network Approach

Since we used torchaudio to load our wave file, we chose
the default sample rate, 44100Hz, as the sample rate. As
it has shown in Fig. 2, we group 300 data points as one
time stamp in the input sequence and the input size of our
3 sec file would be 441 for the first LSTM layer. We chose
441 and 256 as the output size for the two output layers
respectively. For the linear transformation layer, the input
and output size are both 256. The model is trained with
10−4 as the learning rate and updated parameters with the
Adam optimization algorithm [11].

5.1.3 Spectrogram Neural Network Approach

We first used librosa to perform the Short-time Fourier
Transform on each input audio file. Full details on param-
eters used in the convolution blocks can be found in our
code. In terms of hyperparameters, we used a batch size of
10, and a learning rate of 10−4 with Adam optimization.

5.2 Experiment Setup

To evaluate our different methods for solving the prob-
lem of converting a piano audio clip to a guitar audio clip,
we conduct both a quantitative evaluation and a qualita-
tive evaluation. For the quantitative test, we measure the
mean absolute error and mean squared error between the
converted piano audio clips resampled to a standard 22050
Hz and the ground truth guitar audio clips. For the qual-
itative test, each of us went through a sample of differ-
ent chord size (ranging from 2-6) and evaluated the sound
(how guitar-like our prediction is) and the pitch (how sim-
ilar the pitches sound to the target). We rank each sample
for each of these metrics on a scale of 1-3 with 1 being
the worst, and 3 being the best, and get the average scores
across each model.

5.3 Experiment Results

Our results are summarized in Table 1 and Table 2.
We found that overall, quantitatively, the waveform-
based neural network was the best in our experiments.
However, qualitatively, the spectrogram-based neu-
ral network was the best. To listen to some example
results from our different models, please check the
README file at this link: https://github.com/
HeidiCheng/wi22-203-FinalProject/blob/
main/README.md.

5.3.1 Convex Optimization Approach (ConvexOpt)

As can be seen from Table 1, out of the approaches we
compared, the convex optimization approach resulted in
the second lowest mean absolute error, 849.25. It per-
formed only slightly worse than the WavNet approach in
terms of mean absolute error. However, when looking at
the results from the qualitative test, we can see that the con-
vex optimization approach had the worst performance out
of the three approaches compared. Compared to the other
two approaches, the convex optimization approach led to
converted piano samples that sounded the least guitar-like.
That being said, the convex optimization approach did pro-
duce converted piano samples that were decently accurate
in terms of pitch.
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We believe that one reason that the convex optimization
approach may have performed the worst out of the three
approaches in the qualitative test could be due to the fact
that we sample the input training piano and guitar samples
at a sample rate of 3000, and then later resample the con-
verted piano sample to 22050 Hz. This could potentially
make the predicted guitar sample sound stranger to the hu-
man ear, thus causing it to perform worse in the human
evaluation.

Additionally, an observation we notice is that at larger
sample rates, the pseudo inverse convex optimization so-
lution does not work as well as it does at lower sample
rates. The MAE seems to increase when using higher sam-
ple rates. Therefore we chose to use a sample rate of 3000
for loading in our samples, because it allows us to obtain
decent converted piano samples and returns better MAE
results than what we get when we use higher sample rates.

5.3.2 Waveform Neural Network Approach (WavNet)

For all quantitative tests, MAE, MSE, and MAE of dif-
ferent chord sizes, WavNet performs the best among the
three approaches. We suggest the model might be able to
learn more details of the audio by using raw audio. How-
ever, based on human judgement, SpectroNet outperforms
WavNet. The pitch and sound of WavNet’s transformation
are relatively accurate, but the outputs have some noise es-
pecially on chords which contain high notes. We believe
the reason for this is the same as what is discussed in Juke-
box [12]; the reconstruction of mid-to-high frequencies is
hard for the model to learn using only raw data.

5.3.3 Spectrogram Neural Network Approach
(SpectroNet)

As can be seen in Section 2.3 above, the MAE of Spec-
troNet was significantly higher than all of the approaches,
at 6007.79. Based on human evaluation, we all agreed that
the outputs (converted piano clips) produced by this were
quite accurate to the human ear both in terms of sound and
pitch. We suspect this high MAE is due to the fact that this
model works with spectrograms, and the reconstruction of
an audio clip from a spectrogram is not perfect largely due
to the lack of phase information.

6. CONCLUSION

In this work, we first introduced a paired dataset of piano
and guitar audio clips. Then we proposed three different
approaches to solve the problem of converting a piano au-
dio clip to a guitar audio clip: convex optimization, a wave-
form based neural network, and a spectrogram based neu-
ral network. Lastly we conducted experiments using these
three approaches, and used both quantitative and qualita-
tive metrics to analyze their effectiveness.

In the future, it would be interesting to develop a one-
to-many instrument transfer model that could provide more
features to a user. Additionally, it would be useful to use
data augmentation so that our approach could better gener-
alize to arbitrary piano and guitar sounds.

6.1 Individual Contribution

All four of us worked together to write this report.
Sachinda helped with the dataset creation and worked
on the spectrogram neural network using PyTorch. Heidi
worked on the dataset creation and built the waveform neu-
ral network using PyTorch. Payal worked on the convex
optimization approach. Ahmed worked on the primal and
dual formulation as well as the KKT conditions.
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