
CSE 203B W21 Homework 4

Due Time : 11:50pm, Wednesday Feb. 16, 2022 Submit to Gradescope

In this homework, we work on exercies from text book. Problem 4.1, 4.8, 4.11, and 4.15 are
related to LP. Problem 4.21, 4.39, and 4.47 are related to QCQP, and SDP. Also, we practice
using the convex optimization tools on a linear programming problem and a quadraticallly
constrained quadratic programming problems.

Total points: 30. Exercises are graded by completion, assignments are graded by correctness.

I. Exercises from textbook chapter 4 (7 pts, 1pt for each problem)

4.1, 4.8, 4.11, 4.15, 4.21, 4.39, 4.47.

II. Assignments (23 pts)

II.1 Linear Programming: You are free to use any software packages. (10 pts)

Given

A =


1 0 0 1
0 1 0 0
0 0 1 0
2 3 −1 2

 ,

bT =
[
−1 2 3 −4

]
,

cT =
[
1 −2 1 −1

]
,

and n = 4, solve the following linear programming problems. If a solution is found, validate that the solution
satisfies the optimality criteria (which was talked about in class or textbook). Otherwise, explain why a
solution is not feasible and suggest how to mitigate the issue if you are the project leader:

II.1.1. minimize f0(x) = cTx subject to Ax ≤ b, x ∈ Rn.

II.1.2. minimize f0(x) = cTx subject to Ax = b, x ∈ Rn.

II.1.3. minimize f0(x) = cTx subject to Ax ≤ b, x ∈ Rn
+.

II.1.4. minimize f0(x) = cTx subject to Ax = b, x ∈ Rn
+.

Solutions

II.1.1. Let z = [−3 − 1 0 0]T . Let x = tz, with t ∈ [4/9,∞). Check if all the inequalities are satisfied:

x1 + x4 = −3t+ 0 ≤ −1

x2 = −t ≤ 2

x3 = 0 ≤ 3

2x1 + 3x2 − x3 + 2x4 = −9t ≤ −4

Clearly, as t → ∞, all these inequalities will remain satisfied. Since the feasible set isn’t empty, this problem
isn’t infeasible. Then, cTx = 1 · (−3t)+ (−2) · (−t)+0+0 = −t, which means limt→∞ cTx = limt→∞ tcT z =
limt→∞(−t) → −∞. Since the objective is to minimize here, this problem is unbounded. To alleviate this,
we can constrain the problem further, something like x1, x2, x3 ≥ 0 and x4 ≤ 0 leads to a bounded solution.
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II.1.2. 
1 0 0 1 −1
0 1 0 0 2
0 0 1 0 3
2 3 −1 2 −4

 R4←R4−2R1−3R2+R3−−−−−−−−−−−−−−−→


1 0 0 1 −1
0 1 0 0 2
0 0 1 0 3
0 0 0 0 −5

 =⇒ 0 = −5

Since b /∈ range(A), we have a contradiction. This means that the feasible set is empty, and the solution is
infeasible. What we can do here is just relax some of the equality constraints into inequality constraints,
particularly x2 ≤ 2 and 2x1 + 3x2 − x3 + 2x4 ≤ −4. This makes the problem unbounded, at which point we
can add some more inequality constraints x3 ≥ 0 and x4 ≤ 0 to make the problem bounded.

II.1.3. For x ∈ Rn
+, the inequality x1 + x4 ≤ −1 cannot be achieved. This means that the feasible set is

empty, and the solution is infeasible. We can sometimes give up on the nonnegativity constraints in these
circumstances, which we can bound with the techniques explained in (II.1.1). There may be situations where
we must have a nonnegative x, at that point we can choose to throw away or alter some inequality constraints
to relax the problem. Particularly, getting rid of x1 + x4 ≤ −1 and x3 ≤ 3 allows the problem to be both
feasible and bounded.

II.1.4 For the same reasoning as (II.1.2), the feasible set is empty, and the solution is infeasible. Since we also
need to deal with nonnegativity here, a simple solution would be to throw away some equality constraints
directly. Particularly, getting rid of x1 + x4 = −1 and x3 = 3 allows the problem to be both feasible and
bounded.

II.2 Graph embedding (13 pts) Graph embedding is an important problem in machine learning and graph
theory. Given an undirected graph G = (V,E) with n vertices, the problem is to assign coordinates in Rm

to each vertex v ∈ V . Typically there are desired qualities or constraints imposed on the embedding—e.g.
the coordinates assigned to connected nodes should be close with respect to some distance metric. We
can formulate this as a quadratically constrained quadratic program (QCQP). Let A ∈ {0, 1}n×n be the
symmetric adjacency of G, and let D be the corresponding diagonal degree matrix such that Dii =

∑
j Ai,j .

The graph Laplacian is defined to be L = D −A.

Let x, y ∈ Rn represnt the x and y coordinates of n vertices. Given a parameter c ∈ R++, one way to define
the graph embedding problem in 2-d is to solve the following problem:

min
x,y∈Rn

x⊤Lx+ y⊤Ly

s.t. x⊤x ≤ c, y⊤y ≤ c
(1)

(i) Show that x⊤Lx =
∑

i,j∈E(xi − xj)
2

(ii) Consider a partitioning of x; x = [x1 : x2]
⊤, where x1 ∈ Rn−k corresponds to the coordinates of n − k

“free” nodes and x2 ∈ Rk are the coordinates of k “fixed”/“anchor” nodes (likewise for y). Under these
“fixed-node” constraints, show that Prob. 1 is equivalent to

min
x1,y1∈Rn−k

x⊤1 L
′x1 + y⊤1 L

′y1 + b⊤x1 + d⊤y1

s.t. x⊤1 x1 ≤ c′x, y⊤1 y1 ≤ c′y

In other words, express L′, b, d, and c′x & c′y in terms of x1, x2, y1, y2, L, and c. Are there any issues with
Prob. 1 if there are no fixed nodes?
(iii) Implement the problem in CVX/CVXPY and show your result for the given graph with c′x = c′y = 10.
(iii.a) We have written a partial framework in Python to get you started:
https://colab.research.google.com/drive/1apgxNJGN1E4_W6awYbbhNxTyL0VvvMVH?usp=sharing.
(iii.b) If you prefer a different language, you can also download a .txt file containing L, x, y, and the indices
of the fixed nodes:
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https://colab.research.google.com/drive/1apgxNJGN1E4_W6awYbbhNxTyL0VvvMVH?usp=sharing


https://piazza.com/class_profile/get_resource/kx85xrdgigl5m5/kzfw6ud6fd964c (idx, x, y are the
first 3 columns)
(iv) Suppose we change the quadratic inequality constraints on x and y to equality constraints and add a
constraint x⊤y = c′xy. Is the problem still convex? If not, can we still recover a solution?

Solutions

(i)

x⊤Lx = x⊤(D −A)x = x⊤Dx− x⊤Ax

=
∑
i

Diix
2
i −

∑
i,j∈E

2xixj

=
∑
i

∑
i,j∈E

x2
i −

∑
i,j∈E

2xixj

=
∑
i,j∈E

(x2
j + x2

i − 2xixj) =
∑
i,j∈E

(xi − xj)
2

(ii)

1-d case:

consider a partitioning of L that is implied by our partitioning of x:

L =

[
L11 L12

L21 L22

]

Now, expanding the quadratic:

x⊤Lx = [x1 : x2]L[x1 : x2]
⊤

= [x1 : x2]

[
L11 L12

L21 L22

]
[x1 : x2]

⊤

= x⊤1 L11x1 + 2x⊤2 L21x1 + x⊤2 L22x2

So, b = 2x⊤2 L21 and c′x = c− x⊤2 x2. Additionally, note that the minimizer of x⊤1 Lx1 + x⊤1 b is equivalent to
the minimizer of x⊤1 Lx1 + x⊤1 b+ x⊤2 L22x2

(iii)

https://colab.research.google.com/drive/1VZZNL8PTxnLuzaDtX_7g7kAb8q4fNJt4?usp=sharing

(iv)

Changing the quadratic inequality constraints to inequality constraints results in a non-convex problem.
With inequality constraints, the feasible set is the intersection of convex ball constraints (i.e. convex). With
equality constraints, the feasible set is the intersection of non-convex sphere constraints (e.g. a circle in 2-d).

However, an optimal solution can still be recovered. Noting that L is real & symmetric and writing out the
dual problem to P1 results the unique solution to the dual variables corresponding to the eigenvalues of L,
and the primal variables are the corresponding eigenvalues. Alternatively, the solution to P1 is equivalent
to the solution of a Rayleigh Quotient minimization problem so we can use the Variational Theorem of
Eigenvalues.

3

https://piazza.com/class_profile/get_resource/kx85xrdgigl5m5/kzfw6ud6fd964c
https://colab.research.google.com/drive/1VZZNL8PTxnLuzaDtX_7g7kAb8q4fNJt4?usp=sharing
https://en.wikipedia.org/wiki/Min-max_theorem
https://en.wikipedia.org/wiki/Min-max_theorem

