CSE 203B W22 Homework 3

Due Time : 11:50pm, Wednesday Feb. 9, 2022 Submit to Gradescope
Gradescope: https://gradescope.com/

In this homework, we work on exercies from text book including level sets of
convex, concave, quasi-convex, quasi-concave functions (3.1, 3.2), second-order
conditions for convexity on affine sets (3.9), Kullback-Leibler divergence (3.13),
saddle points of convex-concave functions (3.14) determination of convex, con-
cave, quasi-convex, quasi- concave functions (3.16), conjugate functions (3.36),
and gradient and Hessian of conjugate functions (3.40). Extra assignments are
given on conjugate function and compressed sensing using different norms.

Total points: 30. Exercises are graded by completion, assignments are graded
by content.

I. Exercises from textbook chapter 2 (8 pts, 1pt for each problem)
3.1, 3.2, 3.9, 3.13, 3.14, 3.16, 3.36, 3.40.

II. Assignments

II. 1. Conjugate Functions. (4 pts)

Find the conjugate functions of the following functions.
(1) f(z) = 2T Az + bT'z, where x € R", A € R, b € R™.

The conjugate is defined as: f*(y) = sup, (y"z — 2T Az — b"'z) = sup, ((y — b)Tz — 27 Ax).
Let g(z,y) = (y — b)Tx — 2T Ax.

Discuss your solution for the following three cases:
i. matrix A is symmetric and positive definite,
Since VY # 0, 27 Az > 0, we can conclude that this quadratic term overshadows the linear

terms as © — +o00, and because of the minus sign, g(z,y) — —oo. Since this is inconclusive,
we can check the derivative:
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ii. A is positive definite but not symmetric,

The same logic as the first case applies, so we can check the derivative again:

dg(z,y)
ox

F)=—0" (A+AT) " (y—b) — (y— )T (A+AT)”

(=BT (A AT) (= b) — (y— b)T (At AT) (

—y—(A+ AT 2 —b=0 — &= (A+ A7) (y—1b)
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= S0 (A A D)

Note: when we have a form v” Av, notice that this is a scalar, so v7 Av = (UTAU)T =0T ATy,
Add v Av to both sides: 2vTAv = vTAv 4+ vTATv = o7 (A+ AT)v. Finally simplify:

oT Av = oT <A+2AT> v
iii. A is not positive definite.

There are two scenarios to consider here:

e Positive semidefinite case: Vo, 7 Az > 0, with 32 # 0, 27 A2 = 0. Set x = tz. If we
check the limit of g(z,y) as t — +oo (depending on the sign of (y — b)?2):
lim ((y—b)"z—2"Az) = lim (t(y — )"z — t?27 Az)

t—+oo t—+oo

= lim (t(y —b)"2) = o0,if (y —b)"2 #0

t—+oo

IfVz#0A2TA2 =0, (y — b)T2 = 0, then the conjugate is finite. Note that it isn’t
directly 0 however, since we have to check all z such that 27 Az > 0 to conclude that.
When we do, we find that a z that satisfies 27 Az > 0 can achieve values > 0, and
that’s just the answer from part (ii), except a pseudoinverse must be used instead of
the inverse. Therefore, for the semidefinite case, we can conclude the following:

o0 J2#£0, 2TAz=0A(y —b)T2#0
(y—0)" (A+ AT)T (y —b) otherwise

e Non-positive semidefinite case: 3z, 27Az < 0. Set x = tz. If we check the limit of
g(x,y) as t — Fo0:

lim ((y—b)"z—2"Az) = lim (t(y —b)"z — t?27Az) - o0

t—+oo t—+oo



Putting the semidefinite and non-semidefinite cases together, we have the following conju-
gate:

[ y) =

00 3z, 2TA2 <0V (2 #0A2TAz=0A (y — )Tz #0)
sy—0b)7T (A+ AT)T (y —b) otherwise

An alternative solution involves the realization that for the positive semidefinite case, we
also have:
w—y— (A—l—AT)x—b:O — (A—I—AT)x:y—b

A consideration to make here is whether we have y — b € range (A + AT), or equivalently
y — b L nullspace (A + AT). When (A+ AT)z = y — b is solvable, we can define the so-
lution using (at the very least) the pseudoinverse. When it is not solvable, then we do not
have a valid optimum point, and since % is negative semidefinite when A is positive
semidefinite, we can conclude that g can grow boundlessly. In the non-positive semidefinite
case, since % is non-negative semidefinite when A is non-positive semidefinite, g is non-
concave, and nonconcave means there’s a direction along which the function grows without
bound (and this is what the limit argument also utilizes.) Therefore, the following is also a

valid answer:
Fly) = ty—bT (A—I—AT)T(y—b) (Vz, 2TA2 > 0) Ay — b € range (A + AT)
Y 00 otherwise

(2)
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For the ||z||2 < 1 case, since x is bounded by its norm, and we don’t have any norm terms as a

divisor etc., we can take the derivative to figure out the supremum. Let g(x,y) = yTx— 12T x.

2
Then:

P 1 L
g(x,y):y—xzo — =Yy = sup yTx——xTx :—yT% lylla <1
or 2/l <1 2 2

For the ||z||2 > 1 case, consider the following:

e In the range of y that satisfies ||y|]o < 1, we have that:
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1 1
Notice that since [|y|ls = (y"y)> < 1, the ((yTy)2 - 1> ||z||]2 term is negative. To
maximize this bound, we can only minimize ||x||o, which may only approach 1 as the

smallest value here. Since y?z < ||y||2||z||2 is a bound where equality is achievable for
l|z]|2 > 1 (i.e. the bound is tight), we have the following supremum:

an (- 6791+ 1) - 07

[lz]]2>1

N

Ll <1
27 92_

e In the range of y that satisfies ||y||2 > 1, consider the dual norm formula for the 2-norm
(which is self-dual):

y'z
|lyl]2 = sup
= zll2

Let z* be the argument that gives the supremum in this case. Then:

yll2 > 1
yTZ*
[2*{l2

y' 2 > |2l

> 1

y' 2" = |27 > 0
yTz* o ((Z*)T(Z*))§ >0

Let x = tz*, t € R,,. We can look at what happens to our supremum formula as
t — oo:
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Putting it all together, we have:
1,7 T Vs 1 L
F(y) = mM{WZL@yV—5}IMb§1: LTy |yl <1
o0 lyllo>1 (oo llylla>1

II. 2. Compressed Sensing. (18 pts)



For compressed sensing, we formulate the sensed signal y; with an equation y = Ax +
b, where y € R" A € R™,x € R" b € R™. We have vector y contains the input
(hw3_signal.txt), which is generated by a sparse linear combination of sinusoidal waves,
Y R Y, Ao Sin(27 fit) + agp1cos(2m fit), matrix A is a dictionary of sine and cosine pat-
terns and your job is to figure out the coefficients a; using vector x with noise b. It is known
that the data is a 5 second data sampled at 1k Hz. Also, the frequencies (in the unit of
Hertz) are in the set of {i|i € N, 1 <1 < 100}.

Please formulate the problem into an optimization problem that minimizes the sum of the
squared Lo norm of the noise b and the L, norm of the frequency components z. Once
you derive the formulation, use the convex optimization programming tool to compute the
numerical values of the amplitudes and figure out the frequencies of the signal.

I1.2.1. Work on the following with o = 2, i.e. ming||z||az2 + A||D]|2, such that y = Az + b.
(6 pts)

(i) Write the formulation. Note that we need a weight A to balance between the squared
L2 norm of the noise and the L, norm of the frequency components in the objective function.

(ii) Show your results with three or more samples of weight A.

(iii) Show and explain your best choice of the weight.

I1.2.2. Repeat the items of 1 with a = 1. (6 pts)
I1.2.3. Try to repeat the items of 1 with o = 0.5. Explain your solution. (6 pts)

Hint: You should get the major three frequency components in your solution. ps: CVX
is a Matlab-based modeling system for convex optimization created by Professor Stephen

Boyd. For more details, please refer to the tutorial for CVX:
https://web.stanford.edu/class/ee364a/lectures/cvx_tutorial.pdf
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# download the data
lwget https://cseweb.ucsd.edu//classes/wi22/cse203B-a/hws/hw3 signal.txt

--2022-02-03 18:08:01-- https://cseweb.ucsd.edu//classes/wi22/cse203B-a/hws/hw3
Resolving cseweb.ucsd.edu (cseweb.ucsd.edu)... 132.239.8.30

Connecting to cseweb.ucsd.edu (cseweb.ucsd.edu)|132.239.8.30|:443... connected.
HTTP request sent, awaiting response... 200 OK

Length: 127528 (125K) [text/plain]

Saving to: ‘hw3 signal.txt’

hw3_signal.txt 1008 [===================>] 124.54K 590KB/s in 0.2s

2022-02-03 18:08:02 (590 KB/s) - ‘hw3_signal.txt’ saved [127528/127528]

import cvxpy as cp # cvxpy-for-convex-opt.
import-numpy-as- np-*#-numpy-for-linear-algebra
import-matplotlib.pyplot-as-plt-#-matplotlib-for-plotting

# solution
#sln = np.array([0.000000000000000000e+00, 1.999100619435016934e+00, 0.00000000000000¢
sln = np.array([0.,0.,1.99910062,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,1.01053

# Load and plot the observed signal

signal = np.loadtxt('hw3 signal.txt')

signal np.reshape(signal, (-1,1))

print('length of signal (5s, 1k Hz): {:.2f} mean of signal: {:.2f} std of signal: {:.:
plt.plot(signal)

length of signal (5s, 1k Hz): 5001.00 mean of signal: 0.00 std of signal: 2.02
[<matplotlib.lines.Line2D at 0x7f6caf69b850>]

T T T T T
0 1000 2000 3000 4000 5000

# Known parameters

https://colab.research.google.com/drive/14QpnbhEWfyBIwPz7ccaaljPQjfpgGIEl ?usp=sharing#scroll To=JiKB6EXzeu VY &printMode=true 1/5
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t = np.linspace(0,5,num=5001) # range in seconds
f = np.linspace(1l,100, num=100) # frequency range
Fsin = lambda fs, ts: np.sin(2*np.pi*fs*ts)
Fcos = lambda fc, tc: np.cos(2*np.pi*fc*tc)
Phi = np.array([[summand for fk in f
for summand in (Fsin(fk, tk), Fcos(fk,tk))]
for tk in t]) # Fourier basis for the vector space of t-periodic func

# are the columns of Phi orthogonal?
print (Phi.shape)
plt.imshow(Phi.T@Phi)

(5001, 200)
<matplotlib.image.AxesImage at 0x7f6caflfe5d0>
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# Problem parameters / variables
X = cp.Variable((200,1)) # sparse set of coefficients on the basis functions (variable

lamb = cp.Parameter (nonneg=True) # tradeoff reconstruction / sparsity
lamb.value = le-1

A = cp.Parameter((5001,200)) # dictionary param
A.value = Phi

y = cp.Parameter((5001,1)) # observation param
y.value = signal

alpha = 1 # p-norm regularization- want to use one that encourages sparsity (e.g. alp!

# Solve problem & print loss
# \min_x ||x||_\alpha + \lambda*(||Ax - y||_2)"2

obj = cp.Minimize(cp.norm(x, alpha) + lamb*cp.norm(y-A@x, 2)**2)

prob = cp.Problem(obj)

https://colab.research.google.com/drive/14QpnbhEWfyBIwPz7ccaaljPQjfpgGIEl ?usp=sharing#scroll To=JiKB6EXzeu VY &printMode=true 2/5
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print('final objective')
prob.solve()

final objective
476.2807125774311

# Plot signal reconstruction

plt.plot(Phi@sln,label="true signal',alpha=0.5)
plt.plot(signal,label="'noisy observation',alpha=0.2)
plt.plot(Phi@x.value,label="reconstruction',alpha=0.5)
plt.legend()

<matplotlib.legend.Legend at 0x7f6caebl18710>

G - true signal
noisy observation
reconstruction

# Plot recovered coefficient values (solution is offset by 1)

plt.vlines(np.arange(200),0,x.value,label="'recovered coefficients',color="'green')
plt.vlines(np.arange(201),0,[0]+1list(sln),label="true coefficients',color='blue')
plt.legend()

<matplotlib.legend.Legend at 0x7f6cad416d10>

2.0 1 — recovered coefficients
— true coefficients
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# How to choose \lambda?
# depends on your tradeoff. Usually want to choose one
# corresponding to a "knee point" (e.g. sparsest solution for a given reconstruction t

from tgdm import tgdm

loss = []
recons = []
sparsity = []
lambdas = [1,5e-1,1e-1,1e-2,1e-3]
for 1 in tgdm(lambdas):
lamb.value = 1
obj = cp.Minimize(cp.norm(x, alpha) + lamb*cp.norm(y-A@x, 2)**2)
prob = cp.Problem(obj)
lval = prob.solve()
loss.append(lval)
recons.append(np.linalg.norm(signal - Phi@x.value)**2)
sparsity.append(np.linalg.norm(x.value,alpha))

fig, axs = plt.subplots(1l,3,sharex=True,figsize=(12,4))
axs[0].set title('loss')

axs[0].plot(np.log(lambdas), loss)

axs[l].set _title('reconstruction')
axs[l].plot(np.log(lambdas), sparsity)
axs[2].set_title('sparsity')
axs[2].plot(np.log(lambdas), recons)

axs[l].set_xlabel('log(\lambda)"')

100 || 5/5 [01:15<00:00, 15.12s/it]
Text (0.5, 0, 'log(\\lambda)')

loss reconstruction sparsity
5300 A
75 1
4000 ~ 7.0 1 5200 -
65 1
1000 4 5100
6.0
5000
2000 A =
5.0 4 4900 4
1000 A 45 1 4300 +
4.0 1
0 4700 4
T T T T 35 T T T T T T T T
-8 —4 -2 0 -6 —4 -2 0 -6 —4 -2 0
log(\lambda)

https://colab.research.google.com/drive/14QpnbhEWfyBIwPz7ccaaljPQjfpgGIEl ?usp=sharing#scroll To=JiKB6EXzeu VY &printMode=true 4/5



2/3/22,11:22 AM cse203b_hw4_cs.ipynb - Colaboratory

https://colab.research.google.com/drive/14QpnbhEWfyBIwPz7ccaaljPQjfpgGIEl ?usp=sharing#scroll To=JiKB6EXzeu VY &printMode=true 5/5



