
CSE 203B W22 Homework 1

Due Time : 11:50pm, Wednesday Jan. 12, 2022 Submit to Gradescope
Gradescope: https://gradescope.com/

In this homework, we work on the basic concepts of convex optimization and linear
algebra.
All the problems are graded by content.

1. Convex Optimization (12 pts)
1.1. Given a function f0(x) = x4 − 4x3 + 6x2 − 4x + 1, where x ∈ R. Solve minxf0(x) using
Kuhn-Tucker conditions. Show your derivation. (2 pts)

[Solution]
We can solve minxf0(x) using the following KT conditions:

∇2f0(x) ≥ 0

∇f0(x
∗) = 0

First, we have ∇2f0(x) = 12(x− 1)2 ≥ 0 which shows that f0(x) is a convex function. This means
that the local minimum of f0(x) is the global minimum. This allows us to find minxf0(x) through
the first derivative test. By solving ∇f0(x

∗) = ((x∗ − 1)4)′ = 4(x∗ − 1)3 = 0, we have x∗ = 1, and
minx f0(x) = 0.

1.2. Given two functions f0(x) = x2 − 3x+ 1, and f1(x) = 3x+ 1, where x ∈ R. Solve minxf0(x)
subject to f1(x) ≤ 0 using the primal dual transform with Lagrange multipliers. Show your deriva-
tion. (10 pts)

[Solution]
The Lagrangian is L(x, λ) = f0(x) + λf1(x) = x2 − 3x + 1 + λ(3x + 1), where λ is the Lagrange
multiplier, λ ∈ R, λ ≥ 0.
The primal problem is minx maxλ L(x, λ) and the dual problem is maxλ minx L(x, λ) = maxλ g(λ).
To solve the dual problem, we first solve minx L(x, λ) using KT conditions:

∂2L(x, λ)

∂x2
= 2 ≥ 0

∂L(x, λ)

∂x
= 2x+ (3λ− 3) = 0

From the solution, we know that x = 3−3λ
2 is the global minimum of L(x, λ). So we can plug this

into g(λ) and get

g(λ) =
−5 + 22λ− 9λ2

4
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Then, we solve maxλ g(λ) using KT conditions:

∂g2(λ)

∂λ2
= −9

2
≤ 0

∂g(λ)

∂λ
=

11− 9λ

2
= 0

And we get λ = 11
9 . By plugging this back into x(λ), we have x∗ = − 1

3 , and minx f0(x) =
19
9 .

2. Matrix Properties (14 pts)
2.1. Linear System (2pts)

Consider the following system of linear equations

x1 + x2 + 3x3 = 1

2x1 − x2 + 2x3 = −2

3x1 + 5x3 = −1.

Write the equations in a matrix form.

[Solution] 1 1 3
2 −1 2
3 0 5

x1

x2

x3

 1
−2
−1


Ax = b

2.2. For the matrix in problem 2.1, derive its range. What’s the rank of this matrix? (2pts)

[Solution]
By row reducing matrix A we have:1 1 3

2 −1 2
3 0 5

 R2←R2−2R1−−−−−−−−→

1 1 3
0 −3 −4
3 0 5

 R3←R3−3R1−−−−−−−−→

1 1 3
0 −3 −4
0 −3 −4


R3←R3−R2−−−−−−−−→

1 1 3
0 −3 −4
0 0 0

 R2←−R2/3−−−−−−−→

1 1 3
0 1 4/3
0 0 0


Since the row echelon form of A contains 2 pivots, its rank is 2. The range is the span of the column
vectors that contain the pivot positions, which is

R(A) = c1

12
3

+ c2

 1
−1
0

, ∀c1, c2 ∈ R

2.3. Derive the nullspace of the matrix in problem 2.1. What’s the relation between the range
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and nullspace of a matrix? (2pts)

[Solution]
The nullspace of A consists of all solutions x to Ax = 0.
By doing row reduction the same way in question 2.2 we reach the same row echelon form of A:1 1 3

2 −1 2
3 0 5

x1

x2

x3

 =

00
0

 −→

1 1 3
0 1 4/3
0 0 0

x1

x2

x3

 =

00
0


Since the row echelon form of A contains 1 zero row, the dimension of nullspace is 1.

To find the nullspace, we first identify the free variable x3 which corresponds to the free column 3.
Column 3 is free because it has no pivots. Then we can represent the pivot variables x1, x2 with
respect to the free variable x3 by solving:

x2 + 4x3/3 = 0 =⇒ x2 = −4x3/3

x1 + x2 + 3x3 = 0 =⇒ x1 = −5x3/3

These solutions form the nullspace of A:

N(A) = x3

−5/3
−4/3
1

, ∀x3 ∈ R

Here, we have a 2-dimensional range, and a 1-dimensional nullspace, which adds up to 3, the num-
ber of columns in our matrix.
In general, for a m× n matrix A, the dimensions of R(A) and N(A) sums to n.

2.4. Derive the trace and determinant of the matrix in problem 2.1. Write the eigenvalues and
eigenvectors. (2pts)

[Solution]

1. The trace of a matrix is the sum of the elements along the main diagonal:

tr(A) = tr

1 1 3
2 −1 2
3 0 5

 = 1 + (−1) + 5 = 5

2. The determinant of matrix A can be calculated as follows:

det(A) =

∣∣∣∣∣∣
1 1 3
2 −1 2
3 0 5

∣∣∣∣∣∣ = 1

∣∣∣∣−1 2
0 5

∣∣∣∣− 1

∣∣∣∣2 2
3 5

∣∣∣∣+ 3

∣∣∣∣2 −1
3 0

∣∣∣∣ = 1(−5)− 1(4) + 3(3) = 0

Alternatively, since rank(A) = 2 < 3, the matrix is singular, thus det(A) = 0.

3. The eigenvectors x and the associated eigenvalues λ of a matrix A satisfy (A − λI)x = 0
(x ̸= 0).
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We can find the eigenvalues by solving det(A− λI) = 0:∣∣∣∣∣∣
1− λ 1 3
2 −1− λ 2
3 0 5− λ

∣∣∣∣∣∣
= (1− λ)

∣∣∣∣−1− λ 2
0 5− λ

∣∣∣∣− 1

∣∣∣∣2 2
3 5− λ

∣∣∣∣+ 3

∣∣∣∣2 −1− λ
3 0

∣∣∣∣
= (1− λ)(−1− λ)(5− λ)− (4− 2λ) + 3(3 + 3λ)

= λ(12 + 5λ− λ2) = 0

=⇒ λ1 = 0, λ2 =
5 +

√
73

2
, λ3 =

5−
√
73

2

Then the eigenvectors x can be found by solving (A − λI)x = 0. We can row reduce the
matrix A− λI as follows:1− λ 1 3

2 −1− λ 2
3 0 5− λ

 R1← 1
1−λR1

−−−−−−−−→

1 1
1−λ

3
1−λ

2 −1− λ 2
3 0 5− λ


R2←R2−2R1−−−−−−−−→

1 1
1−λ

3
1−λ

0 λ2−3
1−λ

−2λ−4
1−λ

3 0 5− λ

 R3←R3−3R1−−−−−−−−→

1
1

1−λ
3

1−λ
0 λ2−3

1−λ
−2λ−4
1−λ

0 −3
1−λ

λ2−6λ−4
1−λ


R2← 1−λ

λ2−3
R2

−−−−−−−−→

1
1

1−λ
3

1−λ
0 1 −2λ−4

λ2−3
0 −3

1−λ
λ2−6λ−4

1−λ

 R3←R3+
3

1−λR2

−−−−−−−−−−−→

1
1

1−λ
3

1−λ
0 1 −2λ−4

λ2−3
0 0 λ(12+5λ−λ2)

λ2−3


λ(12+5λ−λ2)=0−−−−−−−−−−→

1 1
1−λ

3
1−λ

0 1 −2λ−4
λ2−3

0 0 0


x3 is the free variable, we can solve the following equations for x1 and x2 in terms of x3:

x2 −
2λ+ 4

λ2 − 3
x3 = 0 =⇒ x2 =

2λ+ 4

λ2 − 3
x3

x1 +
x2

1− λ
+

3x3

1− λ
= 0 =⇒ x1 =

3λ+ 5

λ2 − 3
x3

Therefore, the eigenvectors are:

v = c

 3λ+5
λ2−3
2λ+4
λ2−3
1

 ,∀c ∈ R− {0}

4



By plugging in λ1, λ2, λ3, we can derive the corresponding eigenvectors:

λ1 = 0 =⇒ v1 = c

− 5
3

− 4
3
1

 , ∀c ∈ R− {0}

λ2 =
5 +

√
73

2
=⇒ v2 = c

−5+
√
73

6
11−
√
73

6
1

 , ∀c ∈ R− {0}

λ3 =
5−

√
73

2
=⇒ v3 = c

−5−
√
73

6
11+
√
73

6
1

 , ∀c ∈ R− {0}

2.5. Prove the following properties. (3 pts)

• For A ∈ Rm×n, B ∈ Rn×m, trAB = trBA.

• For A,B ∈ Rn×n, detAB = detA detB.

• For A ∈ Rn×n, detA =
∏n

i=1 λi, and trA=
∑n

i=1 λi, where λi, i = 1, . . . , n are the eigenvalues
of A.

[Solution]

1.

tr(AB) =

m∑
i=1

(AB)ii

=

n∑
i=1

m∑
j=1

AijBji

=

m∑
j=1

n∑
i=1

BjiAij

=

n∑
j=1

(BA)jj

= tr(BA)

2. If A is not invertible, then AB is not invertible, we have det(AB) = det(A) det(B) = 0.
If A is invertible, A can be row reduced to an identity matrix I by a finite number of elementary
row operations E1, E2, . . . , En, i.e.

A = EnEn−1 . . . E1I

Multiplying the LHS and RHS by B, we have

AB = EnEn−1 . . . E1B
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Taking the determinant of LHS and RHS, we have

det(A) = det(EnEn−1 . . . E1)

det(AB) = det(EnEn−1 . . . E1B)

If E is an elementary row operation, we have det(EA) = det(E) det(A). Therefore,

det(EnEn−1 . . . E1B) = det(En) det(En−1 . . . E1B)

= det(En) . . . det(E1) det(B)

= det(En . . . E1) det(B)

= det(A) det(B)

3. (a) [Solution 1]
By definition, det(A− λI) = 0 at λ = λ1, . . . , λn, which means λ1, . . . , λn are the roots
of the characteristic polynomial det(A− λI):

det(A− λI) = (λ1 − λ) . . . (λn − λ)

By setting λ = 0, we have det(A) =
∏n

i=1 λi.

[Solution 2]
For any matrix A ∈ Rn×n, it can be transformed to Jordan canonical form J by a
similarity transformation T :

J = T−1AT

where J is an upper triangular matrix and have A’s eigenvalues λ1, . . . , λn on its diagonal.
Using property det(AB) = det(A) det(B), we have

det(J) = det(T−1AT ) = det(T−1) det(A) det(T ) = det(T−1) det(T ) det(A)

det(I) = det(T−1T ) = det(T−1) det(T ) = 1

Since J is a triangular matrix, det(J) =
∏n

i=1 λi.
Therefore, det(A) =

∏n
i=1 λi.

(b) For any matrix A ∈ Rn×n, it can be transformed to Jordan canonical form J by a
similarity transformation T :

J = T−1AT

where J has A’s eigenvalues λ1, . . . , λn on its diagonal, therefore tr(J) =
∑n

i=1 λi. It is
easy to see that similarity transformation preserves trace by using property tr(AB) =
tr(BA):

tr(J) = tr
(
T−1AT

)
= tr

(
T−1(AT )

)
= tr

(
(AT )T−1

)
= tr

(
A
(
TT−1

))
= tr(AI)

= tr(A)

Therefore, tr(A) =
∑n

i=1 λi.
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2.6. Suppose that you are a tutor. Devise a simple but meaningful numerical example to illustrate
the three equations in problem 2.5.(3 pts)

[Solution]
We are not providing examples here, but any simple and meaningful numerical matrices illustrating
the above properties are correct.

3. Matrix Operations (14 pts)
Gradient: consider a function f : Rn → R that takes a vector x ∈ Rn and returns a real value.

Then the gradient of f (w.r.t. x) is the vector of partial derivatives, defined as

∇xf(x) =


∂f(x)
∂x1

∂f(x)
∂x2

...
∂f(x)
∂xn

 .

Hessian: consider a function f : Rn → R that takes a vector x ∈ Rn and returns a real value.
Then the Hessian matrix of f (w.r.t. x) is the n× n matrix of partial derivatives, defined as

∇2
xf(x) =


∂2f(x)
∂x2

1

∂2f(x)
∂x1∂x2

. . . ∂2f(x)
∂x1∂xn

∂2f(x)
∂x1∂x2

∂2f(x)
∂x2

2
. . . ∂2f(x)

∂x2∂xn

...
...

. . .
...

∂2f(x)
∂xn∂x1

∂2f(x)
∂xn∂x2

. . . ∂2f(x)
∂x2

n

 .

3.1. Write the gradient and Hessian matrix for the linear function

f(x) = 2bTx,

where x ∈ Rn and vector b ∈ Rn. (2 pts)

[Solution]

f(x) = 2bTx =

n∑
i=1

2bixi

Gradient:

∇xf(x) =


∂f(x)
∂x1

∂f(x)
∂x2

. . .
∂f(x)
∂xn

 =


2b1
2b2
. . .
2bn

 = 2b
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Hessian:

∇2
xf(x) =


∂2f(x)
∂x2

1

∂2f(x)
∂x1∂x2

. . . ∂2f(x)
∂x1∂xn

∂2f(x)
∂x1∂x2

∂2f(x)
∂x2

2
. . . ∂2f(x)

∂x2∂xn

...
...

. . .
...

∂2f(x)
∂x1∂xn

∂2f(x)
∂x2∂xn

. . . ∂2f(x)
∂x2

n

 =


0 0 . . . 0
0 0 . . . 0
...

...
. . .

...
0 0 . . . 0



3.2. Write the gradient and Hessian matrix of the quadratic function

f(x) = xTAx+ bTx+ c,

where x ∈ Rn, matrix A ∈ Rn×n, vector b ∈ Rn, and c ∈ R. (2 pts)

[Solution]

f(x) = xTAx+ bTx+ c =

n∑
j=1

n∑
i=1

xjAjixi +

n∑
i=1

bixi + c

Gradient:

∇xf(x) =


∂f(x)
∂x1

∂f(x)
∂x2

. . .
∂f(x)
∂xn

 =


(
∑n

i=1 A1ixi +
∑n

j=1 xjAj1) + b1
(
∑n

i=1 A2ixi +
∑n

j=1 xjAj2) + b2
. . .

(
∑n

i=1 Anixi +
∑n

j=1 xjAjn) + bn



=


∑n

i=1(A1i +Ai1)xi + b1∑n
i=1(A2i +Ai2)xi + b2

. . .∑n
i=1(Ani +Ain)xi + bn


= (A+AT )x+ b

Hessian:

∇2
xf(x) =


∂2f(x)
∂x2

1

∂2f(x)
∂x1∂x2

. . . ∂2f(x)
∂x1∂xn

∂2f(x)
∂x1∂x2

∂2f(x)
∂x2

2
. . . ∂2f(x)

∂x2∂xn

...
...

. . .
...

∂2f(x)
∂x1∂xn

∂2f(x)
∂x2∂xn

. . . ∂2f(x)
∂x2

n



=


2A11 A12 +A21 . . . A1n +An1

A21 +A12 2A22 . . . A2n +An2

...
...

. . .
...

An1 +A1n An2 +A2n . . . 2Ann

 = A+AT

3.3. Write the gradient and Hessian matrix of the quadratic function

f(x) = xT (A+AT )x+ bTx+ c,
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where x ∈ Rn, matrix A ∈ Rn×n, vector b ∈ Rn, and c ∈ R. (2 pts)

[Solution]
Based on the results from 3.2, we have

∇xf(x) = 2(A+AT )x+ b

∇2
xf(x) = 2(A+AT )

3.4. Given matrix A ∈ Rm×n where m < n and rank(A) = m, and vector b ∈ Rm, find a so-
lution x ∈ Rn such that Ax = b. (3 pts)

[Solution 1]
Since A has full row rank and m < n, Ax=b has infinitely many solutions. One particular solution
among those is the one with a minimal l2-norm. Finding it can be formulated as solving the fol-
lowing constrained optimization problem:

min
x

∥x∥22 = min
x

xTx

s.t. Ax = b

The Lagrangian is L(x, λ) = xTx+ λT (Ax− b), λ ∈ Rm, λ ≥ 0.
The Lagrange dual problem can be solved as follows:

∂L

∂x
= 2x+ATλ = 0 =⇒ x = −1

2
ATλ (1)

∂L

∂λ
= Ax− b = 0 (2)

By plugging (1) to (2), we have

−1

2
AATλ− b = 0

=⇒ AATλ = −2b

=⇒ λ = −2(AAT )−1b
(3)

Since rank(A) = m, we have rank(AAT ) = rank(A) = m, i.e., the m×m square matrix AAT has
full rank, therefore it is invertible.
By plugging (3) back to (1), we have

x = AT (AAT )−1b

as one particular solution.

[Solution 2]
Since rank(A) = m, we can rearrange the columns of A such that

A = [A1A2]
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where A1 contains m linearly independent columns of A, and A2 contains the rest n−m columns.
A1 is therefore a m×m full rank matrix, i.e. it is invertible. We can further rewrite Ax = b as

[
A1 A2

] [x1

x2

]
= b

where vector x1 ∈ Rm, vector x2 ∈ Rn−m.

Then, one particular solution can be found as x1 = A−11 b and x2 is a zero vector.

3.5. Given a nonsingular matrix

A =

a b c
d e f
g h i

 ,

write the analytic solution of A−1. (2 pts)

[Solution]
The cofactor matrix C is

C =

ei− fh fg − di dh− eg
ch− bi ai− cg bg − ah
bf − ce cd− af ae− bd


The adjoint of matrix A is adj(A) is

adj(A) = CT =

ei− fh ch− bi bf − ce
fg − di ai− cg cd− af
dh− eg bg − ah ae− bd


The determinant of A is

det(A) = a(ei− fh)− b(di− fg) + c(dh− eg)

= aei− afh− bdi+ bfg + cdh− ceg

And the inverse of A is

A−1 =
1

det(A)
adj(A)

3.6. Given a nonsingular matrix

M =

[
A B
C D

]
,

where elements A,B,C,D ∈ R2×2, write an analytic solution of M−1. Hint: For matrices, the
multiplication does not commute, e.g. we cannot claim that AB = BA (3 pts)
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[Solution]
The inverse can be found by doing row reduction as follows:[

A B I 0
C D 0 I

]
R1←A−1R1−−−−−−−−→[
I A−1B A−1 0
C D 0 I

]
R2←R2−CR1−−−−−−−−−→[
I A−1B A−1 0
0 D − CA−1B −CA−1 I

]
R2←(D−CA−1B)−1R2−−−−−−−−−−−−−−−→[
I A−1B A−1 0
0 I −(D − CA−1B)−1CA−1 (D − CA−1B)−1

]
R1←R1−A−1BR2−−−−−−−−−−−−→[
I 0 A−1 +A−1B(D − CA−1B)−1CA−1 −A−1B(D − CA−1B)−1

0 I −(D − CA−1B)−1CA−1 (D − CA−1B)−1

]

M−1 =

[
A−1 +A−1B(D − CA−1B)−1CA−1 −A−1B(D − CA−1B)−1

−(D − CA−1B)−1CA−1 (D − CA−1B)−1

]
This holds under the assumption that D − CA−1B and A are invertible.
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