CSE 203B W22 Homework 1

Due Time : 11:50pm, Wednesday Jan. 12, 2022 Submit to Gradescope
Gradescope: https://gradescope.com/

In this homework, we work on the basic concepts of convex optimization and linear
algebra.
All the problems are graded by content.

1. Convex Optimization (12 pts)
1.1. Given a function fy(z) = 2* — 423 + 62% — 42 + 1, where z € R. Solve min, fo(x) using
Kuhn-Tucker conditions. Show your derivation. (2 pts)

[Solution]
We can solve min,, fo(z) using the following KT conditions:

V2 fo(z) >0

Vfo(z*) =0

First, we have V2 fy(z) = 12(x — 1)? > 0 which shows that fy(z) is a convex function. This means
that the local minimum of fo(z) is the global minimum. This allows us to find min,, fo(z) through
the first derivative test. By solving V fo(z*) = ((z* — 1)*)’ = 4(2* — 1)3 = 0, we have z* = 1, and
min, fo(z) = 0.

1.2. Given two functions fo(z) = 2% — 3z + 1, and fi(z) = 3z + 1, where € R. Solve min, fo(x)
subject to f1(z) < 0 using the primal dual transform with Lagrange multipliers. Show your deriva-
tion. (10 pts)

[Solution]

The Lagrangian is L(z,\) = fo(z) + AMfi(z) = 22 — 3z + 1 + A3z + 1), where X is the Lagrange
multiplier, A € R, A > 0.

The primal problem is min, maxy L(z, A) and the dual problem is maxy min, L(z, \) = maxy g()).
To solve the dual problem, we first solve min, L(z, \) using KT conditions:

O?L(x, \)
Z ) 9>
G =220
OL(z,\) B
T =2 (30 -3) =0

3=32 is the global minimum of L(x,\). So we can plug this

From the solution, we know that = =
into g(\) and get

—54 22X\ —9\?
g(A) = -1



Then, we solve maxy g(\) using KT conditions:

99 (\) 9
J VT T«
ON2 2 =0
dg(N) _11-9A
o 2

And we get \ = %. By plugging this back into z(\), we have z* = f%, and min,, fo(z) = %.

2. Matrix Properties (14 pts)
2.1. Linear System (2pts)
Consider the following system of linear equations

1+ a9+ 33 =1
2£81 7(£2+21‘3 =-2
3x1 + bxg = —1.

Write the equations in a matrix form.
[Solution]
1 1 3| |= 1

2 =1 2| |zo| |—2
3 0 5| [x3] |—1

2.2. For the matrix in problem 2.1, derive its range. What’s the rank of this matrix? (2pts)

[Solution]
By row reducing matrix A we have:
1 1 3 1 1 3 1 1 3
2 _1 2 Ro<+Rs—2R, 0 _3 _4 R3<+R3—3R; 0 _3 _4
3 0 5 3 0 5 0 -3 —4
O R I | O
Joclaley 10 -3 —4] =% 10 1 4/3
0 0 0 00 O

Since the row echelon form of A contains 2 pivots, its rank is 2. The range is the span of the column
vectors that contain the pivot positions, which is

1 1
R(A):Cl 2| 4+co |—1], Ver,c0 € R
3 0

2.3. Derive the nullspace of the matrix in problem 2.1. What’s the relation between the range



and nullspace of a matrix? (2pts)

[Solution]
The nullspace of A consists of all solutions z to Az = 0.
By doing row reduction the same way in question 2.2 we reach the same row echelon form of A:

1 1 3] [= 0 11 37 [x 0
2 -1 2| |zo| = 0| = {0 1 4/3] |22| = |0
30 5| |as 0 00 0] |xs 0

Since the row echelon form of A contains 1 zero row, the dimension of nullspace is 1.

To find the nullspace, we first identify the free variable x3 which corresponds to the free column 3.
Column 3 is free because it has no pivots. Then we can represent the pivot variables x1,zo with
respect to the free variable x3 by solving:

ro+423/3 =0 = x9 = —4a3/3
T+ To+ 313 =0 = x1 =—5J}3/3

These solutions form the nullspace of A:
-5/3
N(A) = 3 —4/3 ,Veg € R
1
Here, we have a 2-dimensional range, and a 1-dimensional nullspace, which adds up to 3, the num-
ber of columns in our matrix.
In general, for a m x n matrix A, the dimensions of R(A) and N(A) sums to n.

2.4. Derive the trace and determinant of the matrix in problem 2.1. Write the eigenvalues and
eigenvectors. (2pts)

[Solution]

1. The trace of a matrix is the sum of the elements along the main diagonal:

1 1 3
tr(A)=tr| |2 -1 2| ]| =1+(-1)+5=5
3 0 5

2. The determinant of matrix A can be calculated as follows:

1 3
‘ = 1(=5) —1(4) +3(3) =0

1
det(A) =2 -1 2/=1
3

-1 2‘_1’2 2
0 5

2 -1
0 53 5‘”” ’

3 0
Alternatively, since rank(A) = 2 < 3, the matrix is singular, thus det(A) = 0.

3. The eigenvectors x and the associated eigenvalues A\ of a matrix A satisfy (A — AXl)x = 0

(z #£0).



We can find the eigenvalues by solving det(A — A\I) = 0:

1-x 1 3
2 —-1-x 2
3 0 5=
—1-X 2 2 2 2 —1-A
(1’\)‘ 0 5—)\‘1’3 5—)\‘ 3’3 0 ‘

=(1=N(=1=XNGB-X)—(4—-2\)+3(3+3))
=A1245A =A%) =0

5+\/ﬁA_5—\/ﬁ
2 72

:>)\1:0,)\2: 5

3

Then the eigenvectors x can be found by solving (A — AI)z = 0. We can row reduce the
matrix A — AI as follows:

1 3
1=A 1 3 Ri+ 125 R1 1 1=A 1-A
2 —1=A 2 — |2 —-1-A 2
3 0 5—A 3 0 5—A
1 3 1 3

L= T—X L= T—X

Ro<+R2—2R; 2 g o4 R3«+R3—3R; 0 A2_3 —2x—4
s T oo S
30 5-4 0 = "1
1 1 3 1 1 3

1-) — — T—X T—X
Ro+ A273R2 0 11>‘ _2)\54 R3<—R3+%Rz 0 1 o4
2)\273 ( A2—3 2)
—3 AT—6A—4 A(1245A=X
0 -X 1-Xx 0 0 —x2_3
1 1 3
A(12452—A2)=0 0 1? R
_—
A2-3
0 0 0

x3 is the free variable, we can solve the following equations for x; and 9 in terms of x3:

T —72)\—’_43: =0 =z —72)\+4x
AV 2= 53"
o X9 + 3583 — 0 — 2 —3/\+5l‘
T T DI
Therefore, the eigenvectors are:
3A+5
223
v=c|3H| ,Vee R-{0}
1



By plugging in A1, A2, A3, we can derive the corresponding eigenvectors:

_5
M=0 = vy =c —% ,VCER—{O}
_1
[ —5+v73]
5 73 6
)\2:#202:(3 11763/% , Vee R—{0}
1
[—5—v73 ]
5—73 6 —
)‘3:T:>U3:C 11+6\/ﬁ , Ve e R—{0}
1

2.5. Prove the following properties. (3 pts)
e For A e R™*" B e R"™™™ trAB = trBA.
e For A, B € R™" detAB = detA detB.

e For A e R™™" detA =[], \i, and trA= Y | A;, where \;,i = 1,...,n are the eigenvalues
of A.

[Solution]

2. If A is not invertible, then AB is not invertible, we have det(AB) = det(A) det(B) = 0.
If A is invertible, A can be row reduced to an identity matrix I by a finite number of elementary
row operations F1, Es, ..., E,, i.e.

A=E,E,1...E1
Multiplying the LHS and RHS by B, we have

AB=FE,F,_...E\B



Taking the determinant of LHS and RHS, we have

det(A) = det(EnEn,1 ce E1>
det(AB) = det(EnE'n_l ce ElB)

If E is an elementary row operation, we have det(EFA) = det(E) det(A). Therefore,

3. (a)

det(EnEy_1 ... By B) = det(E,) det(En_1 ... 1 B)
= det(FE,)...det(E;) det(B)
=det(E, ... Ey)det(B)
= det(A) det(B)

[Solution 1]
By definition, det(A — AI) =0 at A = Aq,..., A,, which means \q,...,\, are the roots
of the characteristic polynomial det(A — AI):

det(A=AI)=MN—=A)...(A\n — )
By setting A = 0, we have det(A4) =[]/, \i.
[Solution 2]
For any matrix A € R™*" it can be transformed to Jordan canonical form J by a

similarity transformation 7":
J=T"'AT

where J is an upper triangular matrix and have A’s eigenvalues A1, ..., A, on its diagonal.
Using property det(AB) = det(A) det(B), we have
det(J) = det(T ' AT) = det(T ") det(A) det(T) = det(T ") det(T) det(A)
det(I) = det(T'T) = det(T 1) det(T) = 1
Since J is a triangular matrix, det(J) =[]/, \;.
Therefore, det(A4) =[] \i-
For any matrix A € R"*"™ it can be transformed to Jordan canonical form J by a

similarity transformation 7":
J=T'AT

where J has A’s eigenvalues A1, ..., \, on its diagonal, therefore tr(J) = >"1" | A;. It is
easy to see that similarity transformation preserves trace by using property tr(AB) =
tr(BA):

Therefore, tr(A) = > 1| Ai.

(=]



2.6. Suppose that you are a tutor. Devise a simple but meaningful numerical example to illustrate
the three equations in problem 2.5.(3 pts)

[Solution]
We are not providing examples here, but any simple and meaningful numerical matrices illustrating
the above properties are correct.

3. Matrix Operations (14 pts)
Gradient: consider a function f : R®™ — R that takes a vector z € R™ and returns a real value.
Then the gradient of f (w.r.t. x) is the vector of partial derivatives, defined as

9f(z)

BEY
of (z)
8122

Vo f(z) =

o)
Oy,

Hessian: consider a function f : R™ — R that takes a vector x € R™ and returns a real value.
Then the Hessian matrix of f (w.r.t. z) is the n X n matrix of partial derivatives, defined as

Pf@) P f(x) 0 f ()
0z Ox10x2 """ Ox10x,
9% f(x) 9% f(x) 9 f(x)
Vif(x) _ 811.8:1’2 az% e 8302.8171
9% f(x) 9% f(x) 9 f(x)
0z, 011 0z, 0T e ox2

3.1. Write the gradient and Hessian matrix for the linear function
fz) =2b"2,

where z € R™ and vector b € R™. (2 pts)

[Solution]
f(z)=2bT2 = Z 2b;x;
i=1
Gradient: o1 o)
oF () o
97 (x) %,
Ox,,



Hessian:

Vif(z) =

0 f(x)

8x1812

9 f(x)
O3

0 f(x)

Oxo0Ty,

2*f(z)
Bxlamn
9% f(x)
0x20xy,

& f(x)

)
ox?

3.2. Write the gradient and Hessian matrix of the quadratic function

flx) =27 Az + b7 +c,

where z € R", matrix A € R™*", vector b € R", and ¢ € R. (2 pts)

[Solution]

Gradient:
af ()
611
of(x)
Vof(x) = | 9=
01 (x)
Oz,

Hessian:

[ o*f(z)
Oz
2*f(x)
8$10£E2

Vif(z) =

02f(x)
LOx10xy,

[ 244

0% f(x)
8I18z2
& f(x)

P
ox3

02 (z)
Ox0T,

n

f(z) szA:v+bTx+c=Z

j=1i=1

n
Z IjAjiIi +

=(A+AD)z+b

9% f(x)
Ox10x,
9% f(x)
0xo0Ty,

Aro + Axy

As1 + Aqo

245

A1 + A1, A+ Agy,

3.3. Write the gradient and Hessian matrix of the quadratic function

f(x) =2t (A+ ANz + vz +

Z b;x; + ¢
=1

(i Avmi + 35 7 451) + by
(Ooimy Azizi + 307 A 2) + b

_(Z;L:l Anixi + Z;‘lzl xjAjn) + by,

-Z?zl(Au + Ain)x; + by
Yo (Ao + Aio)z; + bo

[



where 2 € R™, matrix A € R"*", vector b € R", and ¢ € R. (2 pts)

[Solution]
Based on the results from 3.2, we have

Vof(z) =2(A+ ATz 4+ b

V2f(x) = 2(A+ A”)

3.4. Given matrix A € R™*" where m < n and rank(A) = m, and vector b € R™, find a so-

lution 2 € R™ such that Az = b. (3 pts)

[Solution 1]

Since A has full row rank and m < n, Ax=Db has infinitely many solutions. One particular solution
among those is the one with a minimal {>-norm. Finding it can be formulated as solving the fol-

lowing constrained optimization problem:
min ||z[|3 = min 2"z
x x
st. Ax =10

The Lagrangian is L(z,\) = 27z + AT (Az — b),A € R™, X > 0.
The Lagrange dual problem can be solved as follows:

OL gy 4 ATA =0 — 2= —24T)
oz 2
oL
—=Az—-b=0
o
By plugging (1) to (2), we have
—%AATA ~-b=0

— AATN= -2
= A= —2(4A")"1

(3)

Since rank(A) = m, we have rank(AAT) = rank(A) = m, i.e., the m x m square matrix AAT has

full rank, therefore it is invertible.
By plugging (3) back to (1), we have

z=AT(AAT)" 1
as one particular solution.

[Solution 2]
Since rank(A) = m, we can rearrange the columns of A such that

A = [A1 As]



where A; contains m linearly independent columns of A, and As contains the rest n — m columns.
Ay is therefore a m x m full rank matrix, i.e. it is invertible. We can further rewrite Az = b as

(A1 A {ml} —b

T2
where vector x1 € R™, vector x5 € R"™™,
Then, one particular solution can be found as z; = A;lb and xo is a zero vector.

3.5. Given a nonsingular matrix

a b c
A= |d e f],
g h 1

write the analytic solution of A~1. (2 pts)

[Solution]
The cofactor matrix C' is
et — fh fg—di dh—eg
C=|ch—bi ai—cg bg—ah
bf —ce cd—af ae—bd

The adjoint of matrix A is adj(A) is

et — fh ch—bi bf—ce

adj(A)=CT = |fg—di ai—cg cd—af
J

dh—eg bg—ah ae—bd

The determinant of A is

det(A) = a(et — fh) — b(di — fg) + c(dh — eg)
=aei —afh —bdi+ bfg+ cdh — ceg

And the inverse of A is

1
-1 _ (A
det(A) 24
3.6. Given a nonsingular matrix
A B
w=le 5]

where elements A, B,C,D € R?*2, write an analytic solution of A/ ~'. Hint: For matrices, the
multiplication does not commute, e.g. we cannot claim that AB = BA (3 pts)

10



[Solution]
The inverse can be found by doing row reduction as follows:
[ A B

I o
' C Do 1

Rl(—A_lRl
SRy

1 A'B|AY 0
¢ D |0 I
Rg(*Rz*CRl
L

[T A~'B AL 0

| 0 D— CA'B| -CA™' I

Ro+(D—CA™'B) 'R,

[T A'B AL 0

| 0 I —(D—-CA™'B)~tcA~t (D-CA™'B)™!

Ri<R;1—A"'BR,
—>

(1 0| A1+ A-'B(D—CA™'B)"1CA~! —A"'B(D-CA~'B)"!
0 I —(D—CA'B)"1CA-! (D—-CA-'B)"!

M-l { A' 4+ A7'B(D-CA™IB)"1CA™Y —A"'B(D-CA'B)~! }

—(D—-CA™'B)~lCcA! (D-CcA'B)!
This holds under the assumption that D — CA~!'B and A are invertible.

11



