CSE 203B W22 Homework 1

Due Time : 11:50pm, Wednesday Jan. 12, 2022 Submit to Gradescope Gradescope: https://gradescope.com/

In this homework, we work on the basic concepts of convex optimization and linear algebra.
All the problems are graded by content.

1. Convex Optimization (12 pts)

1.1. Given a function $f_{0}(x)=x^{4}-4 x^{3}+6 x^{2}-4 x+1$, where $x \in \mathbb{R}$. Solve $\min _{x} f_{0}(x)$ using Kuhn-Tucker conditions. Show your derivation. (2 pts)

[Solution]

We can solve $\min _{x} f_{0}(x)$ using the following KT conditions:

$$
\begin{aligned}
\nabla^{2} f_{0}(x) & \geq 0 \\
\nabla f_{0}\left(x^{*}\right) & =0
\end{aligned}
$$

First, we have $\nabla^{2} f_{0}(x)=12(x-1)^{2} \geq 0$ which shows that $f_{0}(x)$ is a convex function. This means that the local minimum of $f_{0}(x)$ is the global minimum. This allows us to find $\min _{x} f_{0}(x)$ through the first derivative test. By solving $\nabla f_{0}\left(x^{*}\right)=\left(\left(x^{*}-1\right)^{4}\right)^{\prime}=4\left(x^{*}-1\right)^{3}=0$, we have $x^{*}=1$, and $\min _{x} f_{0}(x)=0$.
1.2. Given two functions $f_{0}(x)=x^{2}-3 x+1$, and $f_{1}(x)=3 x+1$, where $x \in \mathbb{R}$. Solve $\min _{x} f_{0}(x)$ subject to $f_{1}(x) \leq 0$ using the primal dual transform with Lagrange multipliers. Show your derivation. (10 pts)

[Solution]

The Lagrangian is $L(x, \lambda)=f_{0}(x)+\lambda f_{1}(x)=x^{2}-3 x+1+\lambda(3 x+1)$, where λ is the Lagrange multiplier, $\lambda \in \mathbb{R}, \lambda \geq 0$.
The primal problem is $\min _{x} \max _{\lambda} L(x, \lambda)$ and the dual problem is $\max _{\lambda} \min _{x} L(x, \lambda)=\max _{\lambda} g(\lambda)$. To solve the dual problem, we first solve $\min _{x} L(x, \lambda)$ using KT conditions:

$$
\begin{aligned}
\frac{\partial^{2} L(x, \lambda)}{\partial x^{2}} & =2 \geq 0 \\
\frac{\partial L(x, \lambda)}{\partial x} & =2 x+(3 \lambda-3)=0
\end{aligned}
$$

From the solution, we know that $x=\frac{3-3 \lambda}{2}$ is the global minimum of $L(x, \lambda)$. So we can plug this into $g(\lambda)$ and get

$$
g(\lambda)=\frac{-5+22 \lambda-9 \lambda^{2}}{4}
$$

Then, we solve $\max _{\lambda} g(\lambda)$ using KT conditions:

$$
\begin{aligned}
\frac{\partial g^{2}(\lambda)}{\partial \lambda^{2}} & =-\frac{9}{2} \leq 0 \\
\frac{\partial g(\lambda)}{\partial \lambda} & =\frac{11-9 \lambda}{2}=0
\end{aligned}
$$

And we get $\lambda=\frac{11}{9}$. By plugging this back into $x(\lambda)$, we have $x^{*}=-\frac{1}{3}$, and $\min _{x} f_{0}(x)=\frac{19}{9}$.

2. Matrix Properties (14 pts)

2.1. Linear System (2pts)

Consider the following system of linear equations

$$
\begin{array}{r}
x_{1}+x_{2}+3 x_{3}=1 \\
2 x_{1}-x_{2}+2 x_{3}=-2 \\
3 x_{1}+5 x_{3}=-1
\end{array}
$$

Write the equations in a matrix form.

[Solution]

$$
\begin{gathered}
{\left[\begin{array}{ccc}
1 & 1 & 3 \\
2 & -1 & 2 \\
3 & 0 & 5
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]\left[\begin{array}{c}
1 \\
-2 \\
-1
\end{array}\right]} \\
A x=b
\end{gathered}
$$

2.2. For the matrix in problem 2.1, derive its range. What's the rank of this matrix? (2pts)

[Solution]

By row reducing matrix A we have:

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
1 & 1 & 3 \\
2 & -1 & 2 \\
3 & 0 & 5
\end{array}\right] \xrightarrow{R_{2} \leftarrow R_{2}-2 R_{1}}\left[\begin{array}{ccc}
1 & 1 & 3 \\
0 & -3 & -4 \\
3 & 0 & 5
\end{array}\right] \xrightarrow{R_{3} \leftarrow R_{3}-3 R_{1}}\left[\begin{array}{ccc}
1 & 1 & 3 \\
0 & -3 & -4 \\
0 & -3 & -4
\end{array}\right] } \\
& \xrightarrow{R_{3} \leftarrow R_{3}-R_{2}}\left[\begin{array}{ccc}
1 & 1 & 3 \\
0 & -3 & -4 \\
0 & 0 & 0
\end{array}\right] \xrightarrow{R_{2} \leftarrow-R_{2} / 3}\left[\begin{array}{ccc}
1 & 1 & 3 \\
0 & 1 & 4 / 3 \\
0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

Since the row echelon form of A contains 2 pivots, its rank is 2 . The range is the span of the column vectors that contain the pivot positions, which is
$R(A)=c_{1}\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]+c_{2}\left[\begin{array}{c}1 \\ -1 \\ 0\end{array}\right], \forall c_{1}, c_{2} \in \mathbb{R}$
2.3. Derive the nullspace of the matrix in problem 2.1. What's the relation between the range
and nullspace of a matrix? (2pts)

[Solution]

The nullspace of A consists of all solutions x to $A x=\mathbf{0}$.
By doing row reduction the same way in question 2.2 we reach the same row echelon form of A :

$$
\left[\begin{array}{ccc}
1 & 1 & 3 \\
2 & -1 & 2 \\
3 & 0 & 5
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
1 & 1 & 3 \\
0 & 1 & 4 / 3 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Since the row echelon form of A contains 1 zero row, the dimension of nullspace is 1 .
To find the nullspace, we first identify the free variable x_{3} which corresponds to the free column 3 . Column 3 is free because it has no pivots. Then we can represent the pivot variables x_{1}, x_{2} with respect to the free variable x_{3} by solving:

$$
\begin{aligned}
x_{2}+4 x_{3} / 3 & =0 \\
x_{1}+x_{2}+3 x_{3} & =0
\end{aligned} x_{2}=-4 x_{3} / 3, x_{1}=-5 x_{3} / 3
$$

These solutions form the nullspace of A :
$N(A)=x_{3}\left[\begin{array}{c}-5 / 3 \\ -4 / 3 \\ 1\end{array}\right], \forall x_{3} \in \mathbb{R}$
Here, we have a 2-dimensional range, and a 1-dimensional nullspace, which adds up to 3, the number of columns in our matrix.
In general, for a $m \times n$ matrix A, the dimensions of $R(A)$ and $N(A)$ sums to n.
2.4. Derive the trace and determinant of the matrix in problem 2.1. Write the eigenvalues and eigenvectors. (2pts)

[Solution]

1. The trace of a matrix is the sum of the elements along the main diagonal:

$$
\operatorname{tr}(A)=\operatorname{tr}\left(\left[\begin{array}{ccc}
1 & 1 & 3 \\
2 & -1 & 2 \\
3 & 0 & 5
\end{array}\right]\right)=1+(-1)+5=5
$$

2. The determinant of matrix A can be calculated as follows:

$$
\operatorname{det}(A)=\left|\begin{array}{ccc}
1 & 1 & 3 \\
2 & -1 & 2 \\
3 & 0 & 5
\end{array}\right|=1\left|\begin{array}{cc}
-1 & 2 \\
0 & 5
\end{array}\right|-1\left|\begin{array}{ll}
2 & 2 \\
3 & 5
\end{array}\right|+3\left|\begin{array}{cc}
2 & -1 \\
3 & 0
\end{array}\right|=1(-5)-1(4)+3(3)=0
$$

Alternatively, since $\operatorname{rank}(A)=2<3$, the matrix is singular, thus $\operatorname{det}(A)=0$.
3. The eigenvectors x and the associated eigenvalues λ of a matrix A satisfy $(A-\lambda I) x=0$ $(x \neq \mathbf{0})$.

We can find the eigenvalues by solving $\operatorname{det}(A-\lambda I)=0$:

$$
\begin{aligned}
& \left|\begin{array}{ccc}
1-\lambda & 1 & 3 \\
2 & -1-\lambda & 2 \\
3 & 0 & 5-\lambda
\end{array}\right| \\
& =(1-\lambda)\left|\begin{array}{cc}
-1-\lambda & 2 \\
0 & 5-\lambda
\end{array}\right|-1\left|\begin{array}{cc}
2 & 2 \\
3 & 5-\lambda
\end{array}\right|+3\left|\begin{array}{cc}
2 & -1-\lambda \\
3 & 0
\end{array}\right| \\
& =(1-\lambda)(-1-\lambda)(5-\lambda)-(4-2 \lambda)+3(3+3 \lambda) \\
& =\lambda\left(12+5 \lambda-\lambda^{2}\right)=0 \\
& \Longrightarrow \lambda_{1}=0, \lambda_{2}=\frac{5+\sqrt{73}}{2}, \lambda_{3}=\frac{5-\sqrt{73}}{2}
\end{aligned}
$$

Then the eigenvectors x can be found by solving $(A-\lambda I) x=0$. We can row reduce the matrix $A-\lambda I$ as follows:

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
1-\lambda & 1 & 3 \\
2 & -1-\lambda & 2 \\
3 & 0 & 5-\lambda
\end{array}\right] \xrightarrow{R_{1} \leftarrow \frac{1}{1-\lambda} R_{1}}\left[\begin{array}{ccc}
1 & \frac{1}{1-\lambda} & \frac{3}{1-\lambda} \\
2 & -1-\lambda & 2 \\
3 & 0 & 5-\lambda
\end{array}\right]} \\
& \xrightarrow{R_{2} \leftarrow R_{2}-2 R_{1}}\left[\begin{array}{ccc}
1 & \frac{1}{1-\lambda} & \frac{3}{1-\lambda} \\
0 & \frac{\lambda^{2}-3}{1-\lambda} & \frac{-2 \lambda-4}{1-\lambda} \\
3 & 0 & 5-\lambda
\end{array}\right] \xrightarrow{R_{3} \leftarrow R_{3}-3 R_{1}}\left[\begin{array}{ccc}
1 & \frac{1}{1-\lambda} & \frac{3}{1-\lambda} \\
0 & \frac{\lambda^{2}-3}{1-\lambda} & \frac{-2 \lambda-4}{1-\lambda} \\
0 & \frac{-3}{1-\lambda} & \frac{\lambda^{2}-6 \lambda-4}{1-\lambda}
\end{array}\right] \\
& \xrightarrow{R_{2} \leftarrow \frac{1-\lambda}{\lambda^{2}-3} R_{2}}\left[\begin{array}{ccc}
1 & \frac{1}{1-\lambda} & \frac{3}{1-\lambda} \\
0 & 1 & \frac{-2 \lambda-4}{\lambda^{2}-3} \\
0 & \frac{-3}{1-\lambda} & \frac{\lambda^{2}-6 \lambda-4}{1-\lambda}
\end{array}\right] \xrightarrow{R_{3} \leftarrow R_{3}+\frac{3}{1-\lambda} R_{2}}\left[\begin{array}{ccc}
1 & \frac{1}{1-\lambda} & \frac{3}{1-\lambda} \\
0 & 1 & \frac{-2 \lambda-4}{\lambda^{2}-3} \\
0 & 0 & \frac{\lambda\left(12+5 \lambda-\lambda^{2}\right)}{\lambda^{2}-3}
\end{array}\right] \\
& \xrightarrow{\lambda\left(12+5 \lambda-\lambda^{2}\right)=0}\left[\begin{array}{ccc}
1 & \frac{1}{1-\lambda} & \frac{3}{1-\lambda} \\
0 & 1 & \frac{-2 \lambda-4}{\lambda^{2}-3} \\
0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

x_{3} is the free variable, we can solve the following equations for x_{1} and x_{2} in terms of x_{3} :

$$
\begin{aligned}
x_{2}-\frac{2 \lambda+4}{\lambda^{2}-3} x_{3}=0 & \Longrightarrow x_{2}
\end{aligned}=\frac{2 \lambda+4}{\lambda^{2}-3} x_{3}, ~=x_{1}=\frac{3 \lambda+5}{\lambda^{2}-3} x_{3}
$$

Therefore, the eigenvectors are:

$$
v=c\left[\begin{array}{c}
\frac{3 \lambda+5}{\lambda^{2}-3} \\
\frac{2 \lambda+4}{\lambda^{2}-3} \\
1
\end{array}\right], \forall c \in \mathbb{R}-\{0\}
$$

By plugging in $\lambda_{1}, \lambda_{2}, \lambda_{3}$, we can derive the corresponding eigenvectors:

$$
\begin{gathered}
\lambda_{1}=0 \Longrightarrow v_{1}=c\left[\begin{array}{c}
-\frac{5}{3} \\
-\frac{4}{3} \\
1
\end{array}\right], \forall c \in \mathbb{R}-\{0\} \\
\lambda_{2}=\frac{5+\sqrt{73}}{2} \Longrightarrow v_{2}=c\left[\begin{array}{c}
\frac{-5+\sqrt{73}}{6} \\
\frac{11-\sqrt{73}}{6} \\
1
\end{array}\right], \forall c \in \mathbb{R}-\{0\} \\
\lambda_{3}=\frac{5-\sqrt{73}}{2} \Longrightarrow v_{3}=c\left[\begin{array}{c}
\frac{-5-\sqrt{73}}{6} \\
\frac{11+\sqrt{73}}{6} \\
1
\end{array}\right], \forall c \in \mathbb{R}-\{0\}
\end{gathered}
$$

2.5. Prove the following properties. (3 pts)

- For $A \in \mathbb{R}^{m \times n}, B \in \mathbb{R}^{n \times m}, \operatorname{tr} A B=\operatorname{tr} B A$.
- For $A, B \in \mathbb{R}^{n \times n}, \operatorname{det} A B=\operatorname{det} A \operatorname{det} B$.
- For $A \in \mathbb{R}^{n \times n}, \operatorname{det} A=\prod_{i=1}^{n} \lambda_{i}$, and $\operatorname{tr} A=\sum_{i=1}^{n} \lambda_{i}$, where $\lambda_{i}, i=1, \ldots, n$ are the eigenvalues of A.

[Solution]

1.

$$
\begin{aligned}
\operatorname{tr}(A B) & =\sum_{i=1}^{m}(A B)_{i i} \\
& =\sum_{i=1}^{n} \sum_{j=1}^{m} A_{i j} B_{j i} \\
& =\sum_{j=1}^{m} \sum_{i=1}^{n} B_{j i} A_{i j} \\
& =\sum_{j=1}^{n}(B A)_{j j} \\
& =\operatorname{tr}(B A)
\end{aligned}
$$

2. If A is not invertible, then $A B$ is not invertible, we have $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)=0$.

If A is invertible, A can be row reduced to an identity matrix I by a finite number of elementary row operations $E_{1}, E_{2}, \ldots, E_{n}$, i.e.

$$
A=E_{n} E_{n-1} \ldots E_{1} I
$$

Multiplying the LHS and RHS by B, we have

$$
A B=E_{n} E_{n-1} \ldots E_{1} B
$$

Taking the determinant of LHS and RHS, we have

$$
\begin{aligned}
\operatorname{det}(A) & =\operatorname{det}\left(E_{n} E_{n-1} \ldots E_{1}\right) \\
\operatorname{det}(A B) & =\operatorname{det}\left(E_{n} E_{n-1} \ldots E_{1} B\right)
\end{aligned}
$$

If E is an elementary row operation, we have $\operatorname{det}(E A)=\operatorname{det}(E) \operatorname{det}(A)$. Therefore,

$$
\begin{aligned}
\operatorname{det}\left(E_{n} E_{n-1} \ldots E_{1} B\right) & =\operatorname{det}\left(E_{n}\right) \operatorname{det}\left(E_{n-1} \ldots E_{1} B\right) \\
& =\operatorname{det}\left(E_{n}\right) \ldots \operatorname{det}\left(E_{1}\right) \operatorname{det}(B) \\
& =\operatorname{det}\left(E_{n} \ldots E_{1}\right) \operatorname{det}(B) \\
& =\operatorname{det}(A) \operatorname{det}(B)
\end{aligned}
$$

3. (a) [Solution 1]

By definition, $\operatorname{det}(A-\lambda I)=0$ at $\lambda=\lambda_{1}, \ldots, \lambda_{n}$, which means $\lambda_{1}, \ldots, \lambda_{n}$ are the roots of the characteristic polynomial $\operatorname{det}(A-\lambda I)$:

$$
\operatorname{det}(A-\lambda I)=\left(\lambda_{1}-\lambda\right) \ldots\left(\lambda_{n}-\lambda\right)
$$

By setting $\lambda=0$, we have $\operatorname{det}(A)=\prod_{i=1}^{n} \lambda_{i}$.

[Solution 2]

For any matrix $A \in \mathbb{R}^{n \times n}$, it can be transformed to Jordan canonical form J by a similarity transformation T :

$$
J=T^{-1} A T
$$

where J is an upper triangular matrix and have A's eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$ on its diagonal. Using property $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$, we have

$$
\begin{gathered}
\operatorname{det}(J)=\operatorname{det}\left(T^{-1} A T\right)=\operatorname{det}\left(T^{-1}\right) \operatorname{det}(A) \operatorname{det}(T)=\operatorname{det}\left(T^{-1}\right) \operatorname{det}(T) \operatorname{det}(A) \\
\operatorname{det}(I)=\operatorname{det}\left(T^{-1} T\right)=\operatorname{det}\left(T^{-1}\right) \operatorname{det}(T)=1
\end{gathered}
$$

Since J is a triangular matrix, $\operatorname{det}(J)=\prod_{i=1}^{n} \lambda_{i}$.
Therefore, $\operatorname{det}(A)=\prod_{i=1}^{n} \lambda_{i}$.
(b) For any matrix $A \in \mathbb{R}^{n \times n}$, it can be transformed to Jordan canonical form J by a similarity transformation T :

$$
J=T^{-1} A T
$$

where J has A's eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$ on its diagonal, therefore $\operatorname{tr}(J)=\sum_{i=1}^{n} \lambda_{i}$. It is easy to see that similarity transformation preserves trace by using property $\operatorname{tr}(A B)=$ $\operatorname{tr}(B A)$:

$$
\begin{aligned}
\operatorname{tr}(J) & =\operatorname{tr}\left(T^{-1} A T\right) \\
& =\operatorname{tr}\left(T^{-1}(A T)\right) \\
& =\operatorname{tr}\left((A T) T^{-1}\right) \\
& =\operatorname{tr}\left(A\left(T T^{-1}\right)\right) \\
& =\operatorname{tr}(A I) \\
& =\operatorname{tr}(A)
\end{aligned}
$$

Therefore, $\operatorname{tr}(A)=\sum_{i=1}^{n} \lambda_{i}$.
2.6. Suppose that you are a tutor. Devise a simple but meaningful numerical example to illustrate the three equations in problem 2.5. (3 pts)

[Solution]

We are not providing examples here, but any simple and meaningful numerical matrices illustrating the above properties are correct.
3. Matrix Operations (14 pts)

Gradient: consider a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ that takes a vector $x \in \mathbb{R}^{n}$ and returns a real value. Then the gradient of f (w.r.t. x) is the vector of partial derivatives, defined as

$$
\nabla_{x} f(x)=\left[\begin{array}{c}
\frac{\partial f(x)}{\partial x_{1}} \\
\frac{\partial f(x)}{\partial x_{2}} \\
\vdots \\
\frac{\partial f(x)}{\partial x_{n}}
\end{array}\right] .
$$

Hessian: consider a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ that takes a vector $x \in \mathbb{R}^{n}$ and returns a real value. Then the Hessian matrix of f (w.r.t. x) is the $n \times n$ matrix of partial derivatives, defined as

$$
\nabla_{x}^{2} f(x)=\left[\begin{array}{cccc}
\frac{\partial^{2} f(x)}{\partial x_{1}^{2}} & \frac{\partial^{2} f(x)}{\partial x_{1} \partial x_{2}} & \cdots & \frac{\partial^{2} f(x)}{\partial x_{1} \partial x_{n}} \\
\frac{\partial^{2} f(x)}{\partial x_{1} \partial x_{2}} & \frac{\partial^{2} f(x)}{\partial x_{2}^{2}} & \cdots & \frac{\partial^{2} f(x)}{\partial x_{2} \partial x_{n}} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial^{2} f(x)}{\partial x_{n} \partial x_{1}} & \frac{\partial^{2} f(x)}{\partial x_{n} \partial x_{2}} & \cdots & \frac{\partial^{2} f(x)}{\partial x_{n}^{2}}
\end{array}\right]
$$

3.1. Write the gradient and Hessian matrix for the linear function

$$
f(x)=2 b^{T} x
$$

where $x \in \mathbb{R}^{n}$ and vector $b \in \mathbb{R}^{n} .(2 \mathrm{pts})$

[Solution]

$$
f(x)=2 b^{T} x=\sum_{i=1}^{n} 2 b_{i} x_{i}
$$

Gradient:

$$
\nabla_{x} f(x)=\left[\begin{array}{c}
\frac{\partial f(x)}{\partial x_{1}} \\
\frac{\partial f(x)}{\partial x_{2}} \\
\ldots \\
\frac{\partial f(x)}{\partial x_{n}}
\end{array}\right]=\left[\begin{array}{c}
2 b_{1} \\
2 b_{2} \\
\ldots \\
2 b_{n}
\end{array}\right]=2 b
$$

Hessian:

$$
\nabla_{x}^{2} f(x)=\left[\begin{array}{cccc}
\frac{\partial^{2} f(x)}{\partial x_{1}^{2}} & \frac{\partial^{2} f(x)}{\partial x_{1} \partial x_{2}} & \ldots & \frac{\partial^{2} f(x)}{\partial x_{1} \partial x_{n}} \\
\frac{\partial^{2} f(x)}{\partial x_{1} \partial x_{2}} & \frac{\partial^{2} f(x)}{\partial x_{2}^{2}} & \ldots & \frac{\partial^{2} f(x)}{\partial x_{2} \partial x_{n}} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial^{2} f(x)}{\partial x_{1} \partial x_{n}} & \frac{\partial^{2} f(x)}{\partial x_{2} \partial x_{n}} & \ldots & \frac{\partial^{2} f(x)}{\partial x_{n}^{2}}
\end{array}\right]=\left[\begin{array}{cccc}
0 & 0 & \ldots & 0 \\
0 & 0 & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & 0
\end{array}\right]
$$

3.2. Write the gradient and Hessian matrix of the quadratic function

$$
f(x)=x^{T} A x+b^{T} x+c,
$$

where $x \in \mathbb{R}^{n}$, matrix $A \in \mathbb{R}^{n \times n}$, vector $b \in \mathbb{R}^{n}$, and $c \in \mathbb{R}$. (2 pts)

[Solution]

$$
f(x)=x^{T} A x+b^{T} x+c=\sum_{j=1}^{n} \sum_{i=1}^{n} x_{j} A_{j i} x_{i}+\sum_{i=1}^{n} b_{i} x_{i}+c
$$

Gradient:

$$
\begin{aligned}
\nabla_{x} f(x)=\left[\begin{array}{c}
\frac{\partial f(x)}{\partial x_{1}} \\
\frac{\partial f(x)}{\partial x_{2}} \\
\ldots \\
\frac{\partial f(x)}{\partial x_{n}}
\end{array}\right] & =\left[\begin{array}{c}
\left(\sum_{i=1}^{n} A_{1 i} x_{i}+\sum_{j=1}^{n} x_{j} A_{j 1}\right)+b_{1} \\
\left(\sum_{i=1}^{n} A_{2 i} x_{i}+\sum_{j=1}^{n} x_{j} A_{j 2}\right)+b_{2} \\
\ldots \\
\left(\sum_{i=1}^{n} A_{n i} x_{i}+\sum_{j=1}^{n} x_{j} A_{j n}\right)+b_{n}
\end{array}\right] \\
& =\left[\begin{array}{c}
\sum_{i=1}^{n}\left(A_{1 i}+A_{i 1}\right) x_{i}+b_{1} \\
\sum_{i=1}^{n}\left(A_{2 i}+A_{i 2}\right) x_{i}+b_{2} \\
\cdots \\
\sum_{i=1}^{n}\left(A_{n i}+A_{i n}\right) x_{i}+b_{n}
\end{array}\right] \\
& =\left(A+A^{T}\right) x+b
\end{aligned}
$$

Hessian:

$$
\begin{aligned}
\nabla_{x}^{2} f(x) & =\left[\begin{array}{cccc}
\frac{\partial^{2} f(x)}{\left.\partial x_{1}\right)} & \frac{\partial^{2} f(x)}{\partial x_{1} \partial x_{2}} & \ldots & \frac{\partial^{2} f(x)}{\partial x_{1} \partial x_{n}} \\
\frac{\partial^{f} f(x)}{\partial x_{1} \partial x_{2}} & \frac{\partial^{2} f(x)}{\partial x_{2}^{2}} & \ldots & \frac{\partial^{2} f(x)}{\partial x_{2} \partial x_{n}} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial^{2} f(x)}{\partial x_{1} \partial x_{n}} & \frac{\partial^{2} f(x)}{\partial x_{2} \partial x_{n}} & \ldots & \frac{\partial^{2} f(x)}{\partial x_{n}^{2}}
\end{array}\right] \\
& =\left[\begin{array}{cccc}
2 A_{11} & A_{12}+A_{21} & \ldots & A_{1 n}+A_{n 1} \\
A_{21}+A_{12} & 2 A_{22} & \ldots & A_{2 n}+A_{n 2} \\
\vdots & \vdots & \ddots & \vdots \\
A_{n 1}+A_{1 n} & A_{n 2}+A_{2 n} & \ldots & 2 A_{n n}
\end{array}\right]=A+A^{T}
\end{aligned}
$$

3.3. Write the gradient and Hessian matrix of the quadratic function

$$
f(x)=x^{T}\left(A+A^{T}\right) x+b^{T} x+c
$$

where $x \in \mathbb{R}^{n}$, matrix $A \in \mathbb{R}^{n \times n}$, vector $b \in \mathbb{R}^{n}$, and $c \in \mathbb{R}$. (2 pts)

[Solution]

Based on the results from 3.2, we have

$$
\begin{gathered}
\nabla_{x} f(x)=2\left(A+A^{T}\right) x+b \\
\nabla_{x}^{2} f(x)=2\left(A+A^{T}\right)
\end{gathered}
$$

3.4. Given matrix $A \in \mathbb{R}^{m \times n}$ where $m<n$ and $\operatorname{rank}(A)=m$, and vector $b \in \mathbb{R}^{m}$, find a solution $x \in \mathbb{R}^{n}$ such that $A x=b$. $(3 \mathrm{pts})$

[Solution 1]

Since A has full row rank and $m<n, \mathrm{Ax}=\mathrm{b}$ has infinitely many solutions. One particular solution among those is the one with a minimal l^{2}-norm. Finding it can be formulated as solving the following constrained optimization problem:

$$
\begin{aligned}
\min _{x}\|x\|_{2}^{2} & =\min _{x} x^{T} x \\
\text { s.t. } \quad A x & =b
\end{aligned}
$$

The Lagrangian is $L(x, \lambda)=x^{T} x+\lambda^{T}(A x-b), \lambda \in \mathbb{R}^{m}, \lambda \geq \mathbf{0}$.
The Lagrange dual problem can be solved as follows:

$$
\begin{gather*}
\frac{\partial L}{\partial x}=2 x+A^{T} \lambda=0 \Longrightarrow x=-\frac{1}{2} A^{T} \lambda \tag{1}\\
\frac{\partial L}{\partial \lambda}=A x-b=\mathbf{0} \tag{2}
\end{gather*}
$$

By plugging (1) to (2), we have

$$
\begin{align*}
& -\frac{1}{2} A A^{T} \lambda-b=\mathbf{0} \\
\Longrightarrow & A A^{T} \lambda=-2 b \\
\Longrightarrow & \lambda=-2\left(A A^{T}\right)^{-1} b \tag{3}
\end{align*}
$$

Since $\operatorname{rank}(A)=m$, we have $\operatorname{rank}\left(A A^{T}\right)=\operatorname{rank}(A)=m$, i.e., the $m \times m$ square matrix $A A^{T}$ has full rank, therefore it is invertible.
By plugging (3) back to (1), we have

$$
x=A^{T}\left(A A^{T}\right)^{-1} b
$$

as one particular solution.

[Solution 2]

Since $\operatorname{rank}(A)=m$, we can rearrange the columns of A such that

$$
A=\left[A_{1} A_{2}\right]
$$

where A_{1} contains m linearly independent columns of A, and A_{2} contains the rest $n-m$ columns. A_{1} is therefore a $m \times m$ full rank matrix, i.e. it is invertible. We can further rewrite $A x=b$ as

$$
\left[\begin{array}{ll}
A_{1} & A_{2}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=b
$$

where vector $x_{1} \in \mathbb{R}^{m}$, vector $x_{2} \in \mathbb{R}^{n-m}$.
Then, one particular solution can be found as $x_{1}=A_{1}^{-1} b$ and x_{2} is a zero vector.
3.5. Given a nonsingular matrix

$$
A=\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right]
$$

write the analytic solution of A^{-1}. (2 pts)

[Solution]

The cofactor matrix C is

$$
C=\left[\begin{array}{ccc}
e i-f h & f g-d i & d h-e g \\
c h-b i & a i-c g & b g-a h \\
b f-c e & c d-a f & a e-b d
\end{array}\right]
$$

The adjoint of matrix A is $\operatorname{adj}(A)$ is

$$
\operatorname{adj}(A)=C^{T}=\left[\begin{array}{ccc}
e i-f h & c h-b i & b f-c e \\
f g-d i & a i-c g & c d-a f \\
d h-e g & b g-a h & a e-b d
\end{array}\right]
$$

The determinant of A is

$$
\begin{aligned}
\operatorname{det}(A) & =a(e i-f h)-b(d i-f g)+c(d h-e g) \\
& =a e i-a f h-b d i+b f g+c d h-c e g
\end{aligned}
$$

And the inverse of A is

$$
A^{-1}=\frac{1}{\operatorname{det}(A)} \operatorname{adj}(A)
$$

3.6. Given a nonsingular matrix

$$
M=\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]
$$

where elements $A, B, C, D \in \mathbb{R}^{2 \times 2}$, write an analytic solution of M^{-1}. Hint: For matrices, the multiplication does not commute, e.g. we cannot claim that $A B=B A$ (3 pts)

[Solution]

The inverse can be found by doing row reduction as follows:

$$
\begin{aligned}
& {\left[\begin{array}{ll|ll}
A & B & I & 0 \\
C & D & 0 & I
\end{array}\right]} \\
& \xrightarrow{R_{1} \leftarrow A^{-1} R_{1}} \\
& {\left[\begin{array}{cc|cc}
I & A^{-1} B & A^{-1} & 0 \\
C & D & 0 & I
\end{array}\right]} \\
& \xrightarrow{R_{2} \leftarrow R_{2}-C R_{1}} \\
& {\left[\begin{array}{cc|cc}
I & A^{-1} B & A^{-1} & 0 \\
0 & D-C A^{-1} B & -C A^{-1} & I
\end{array}\right]} \\
& \xrightarrow{R_{2} \leftarrow\left(D-C A^{-1} B\right)^{-1} R_{2}} \\
& {\left[\begin{array}{cc|c}
I & A^{-1} B & A^{-1} \\
0 & I & -\left(D-C A^{-1} B\right)^{-1} C A^{-1}
\end{array}\left(D-C A^{-1} B\right)^{-1}\right]} \\
& \xrightarrow{R_{1} \leftarrow R_{1}-A^{-1} B R_{2}} \\
& {\left[\begin{array}{cc|cc}
I & 0 & A^{-1}+A^{-1} B\left(D-C A^{-1} B\right)^{-1} C A^{-1} & -A^{-1} B\left(D-C A^{-1} B\right)^{-1} \\
0 & I & -\left(D-C A^{-1} B\right)^{-1} C A^{-1} & \left(D-C A^{-1} B\right)^{-1}
\end{array}\right]} \\
& M^{-1}=\left[\begin{array}{cc}
A^{-1}+A^{-1} B\left(D-C A^{-1} B\right)^{-1} C A^{-1} & -A^{-1} B\left(D-C A^{-1} B\right)^{-1} \\
-\left(D-C A^{-1} B\right)^{-1} C A^{-1} & \left(D-C A^{-1} B\right)^{-1}
\end{array}\right]
\end{aligned}
$$

This holds under the assumption that $D-C A^{-1} B$ and A are invertible.

