CSE 203B W21 Homework 2 Sample Solution
Due Time : 11:50pm, Monday Feb. 1, 2021 Submit to Gradescope
Gradescope: https://gradescope.com/

In this homework, we work on exercies from text book including level sets of convex, concave, quasi-convex, quasi-concave functions (3.2), second-order conditions for convexity on affine sets (3.9), KullbackLeibler divergence (3.13), determination of convex, concave, quasiconvex, quasi-concave functions (3.16), conjugate functions (3.36), and gradient and Hessian of conjugate functions (3.40). Extra assignments are given on entropy, Kullback-Leibler divergence, and conjugate function.

Total points: 30. Exercises are graded by completion, assignments are graded by content.
I. Exercises from textbook chapter 3 ($6 \mathrm{pts}, 1 \mathrm{pt}$ for each problem)

$$
3.2,3.9,3.13,3.16,3.36,3.40
$$

II. Assignments (24 pts)

II. 1. Entropy. (8 pts)

In information theory, entropy is defined as

$$
H(X)=-\sum_{i=1}^{n} p_{i} \log p_{i}
$$

where $P\left(X=x_{i}\right)=p_{i}$ for $i \in\{1,2, \ldots, n\}, p_{i}>0 \forall i$ and $\sum_{i=1}^{n} p_{i}=1$.
(1) Show that the entropy $H(X)$ is concave.

We can show that entropy $H(x)$ is concave with $\nabla^{2} H(x) \preccurlyeq 0$.
(2) Derive the conjugate function of the negative entropy $(-H(X))$.

By taking the gradient of the conjugate function and enforce the equality, we have $e^{y_{i}-1}=p_{i}$. Then, we plug in the derived relation into the conjugate function and arrive at $f^{*}(y)=\sum_{i=1}^{n} e^{y_{i}-1}$. (You get full credit if you reach this step.) If we plug in the constraint of p, we will have $\sum_{i=1}^{n} e^{y_{i}-1}=1$.
II. 2. Properties and application of Kullback-Leibler divergence. (8 pts): It is often useful to measure the difference between two probability distributions over the same random variable. Here, we define the Kullback-Leibler (KL) divergence as $K L(p, q)=\sum_{i} p_{i} \log \left(\frac{p_{i}}{q_{i}}\right)$, where $p_{i}>0, q_{i}>0, \forall i \in\{1,2, \ldots, n\}$, and $\sum_{i=1}^{n} p_{i}=\sum_{i=1}^{n} q_{i}=1$.
(1) Assume we have two six-sided dice with the probability distributions as shown in the given table. Please calculate the KL divergences $K L(P, Q)$ and $K L(Q, P)$ of the given example.

Event	P	Q
1	$1 / 6$	$1 / 12$
2	$1 / 6$	$1 / 6$
3	$1 / 6$	$1 / 4$
4	$1 / 6$	$1 / 4$
5	$1 / 6$	$1 / 6$
6	$1 / 6$	$1 / 12$

Plug in the given numbers into the definition of KL-divergence, we have $K L(P, Q)=\frac{1}{6} \ln (2)+\frac{1}{6} \ln (1)+\frac{1}{6} \ln \left(\frac{2}{3}\right)+\frac{1}{6} \ln \left(\frac{2}{3}\right)+\frac{1}{6} \ln (1)+\frac{1}{6} \ln (2) \approx 0.09589$, and $K L(Q, P)=\frac{1}{12} \ln \left(\frac{1}{2}\right)+\frac{1}{6} \ln (1)+\frac{1}{4} \ln \left(\frac{3}{2}\right)+\frac{1}{4} \ln \left(\frac{3}{2}\right)+\frac{1}{6} \ln (1)+\frac{1}{12} \ln \left(\frac{1}{2}\right) \approx$ 0.08721 .
(2) Use the example in (2) to illustrate that the Hellinger distance can serve as a lower bound:

$$
K L(P, Q) \geq \sum_{i}\left(\sqrt{p_{i}}-\sqrt{q_{i}}\right)^{2}
$$

Plug in the numbers and we get the lower bound $K L(P, Q) \geq\left(\sqrt{\frac{1}{6}}-\sqrt{\frac{1}{12}}\right)^{2}+$ $\left(\sqrt{\frac{1}{6}}-\sqrt{\frac{1}{6}}\right)^{2}+\left(\sqrt{\frac{1}{6}}-\sqrt{\frac{1}{4}}\right)^{2}+\left(\sqrt{\frac{1}{6}}-\sqrt{\frac{1}{4}}\right)^{2}+\left(\sqrt{\frac{1}{6}}-\sqrt{\frac{1}{6}}\right)^{2}+\left(\sqrt{\frac{1}{6}}-\sqrt{\frac{1}{12}}\right)^{2} \approx$ 0.04543
(3) Create a simple but nontrivial numerical example to demonstrate that $K L(P, Q) \geq 0$ for all possible P, Q and the equality holds only when $P=Q$.

Any reasonable examples are accepted as correct answers.
II. 3. Further practice on conjugate functions. (4 pts)

Consider the function

$$
f(x)= \begin{cases}\frac{1}{2} x^{2}, & |x|<1 \\ |x|-\frac{1}{2}, & |x|>1\end{cases}
$$

Find the conjugate function f^{*}.

$$
f^{*}(y)= \begin{cases}\frac{1}{2} y^{2}, & |y|<1, \\ \infty, & |y|>1 . \\ \text { undefined, } & |y|=1\end{cases}
$$

No points will be deducted if the undefined case is missing.
II. 4. Show that the dual of the l_{p} norm is the l_{q} norm, where $\frac{1}{p}+\frac{1}{q}=1$. (4 pts)

Solve $\nabla_{y} \frac{x^{T} y}{\|y\|_{p}}=0$. Using the fractions differentiation, we can simplify the equation and arrive at the expression $x_{i}\|y\|_{p}=\left(x^{T} y\right) \frac{y_{i}^{p-1}\|y\|_{p}}{\sum_{k=1}^{n} y_{k}^{p}}$. Next, we raise each x_{i} to the exponential of $\frac{p}{p-1}$ and sum up the n elements. This will lead us to $\sum_{i} x_{i}^{\frac{p}{p-1}}=\left(x^{T} y\right)^{\frac{p}{p-1}}$. Last, we let $q=\frac{p}{p-1}$, and we can express $x^{T} y$ as $\left(\sum x_{i}^{q}\right)^{\frac{1}{q}}$, which is equivalent to $\|x\|_{q}$.

