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1 Matrix Properties

1.1 Linear System
2 4 6

1 −1 2

3 0 5



x1

x2

x3

 =


1

−1

2


1.2 Range and Rank

Row reducing the matrix:
2 4 6

1 −1 2

3 0 5

 R1←R1/2−−−−−−→


1 2 3

1 −1 2

3 0 5

 R2←R2−R1−−−−−−−−→


1 2 3

0 −3 −1

3 0 5



1 2 3

0 −3 −1

3 0 5

 R3←R3−3R1−−−−−−−−→


1 2 3

0 −3 −1

0 −6 −4

 R2←−R2/3−−−−−−−→


1 2 3

0 1 1/3

0 −6 −4



1 2 3

0 1 1/3

0 −6 −4

 R3←R3+6R2−−−−−−−−→


1 2 3

0 1 1/3

0 0 −2

 R3←−R3/2−−−−−−−→


1 2 3

0 1 1/3

0 0 1



1 2 3

0 1 1/3

0 0 1

 R2←R2−R3/3−−−−−−−−−→


1 2 3

0 1 0

0 0 1

 R1←R1−3R3−−−−−−−−→


1 2 0

0 1 0

0 0 1
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1 2 0

0 1 0

0 0 1

 R1←R1−2R2−−−−−−−−→


1 0 0

0 1 0

0 0 1

 = I3

Since the reduced row echelon form of the matrix contains 3 pivots, its rank is
3. The range is the span of the column vectors that contain the pivot positions,
which is onto R3 since the columns are independent of each other:

R = span



2

1

3

 ,


4

−1

0

 ,


6

2

5


 = R3

1.3 Nullspace

The nullspace is the set of points that satisfy the following equation:
2 4 6

1 −1 2

3 0 5



x1

x2

x3

 =


0

0

0


Using row reduction on the augmented form, the same way it was done in
question (1.2):

2 4 6 0

1 −1 2 0

3 0 5 0

 (1.2) row reductions−−−−−−−−−−−−−−→


1 0 0 0

0 1 0 0

0 0 1 0

 =⇒


x1

x2

x3

 =


0

0

0


The nullspace is therefore a space which uses the 0 vector as its basis, which
means that it only spans a single point.
In general, the number of dimensions of the range and the number of dimen-
sions of the nullspace add up to the number of columns in a matrix. Here,
we have a 3-dimensional range, and a 0-dimensional nullspace, which adds
up to 3, the number of columns in our matrix. Furthermore, vectors in the
nullspace (nullspace(A)) are orthogonal to the vectors in the range of the trans-
pose (range

(
AT
)
). Since our nullspace only consists of the 0 vector, then by

definition, the dot product of any vector with the vectors in the nullspace is 0.
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1.4 Trace, Determinant, Eigenvalues, Eigenvectors

The trace of a matrix is the sum of the elements along the main diagonal:

trace



2 4 6

1 −1 2

3 0 5


 = 2 + (−1) + 5 = 6

The determinant for the matrix can be calculated as follows:∣∣∣∣∣∣∣∣∣
2 4 6

1 −1 2

3 0 5

∣∣∣∣∣∣∣∣∣ = 2

∣∣∣∣∣∣−1 2

0 5

∣∣∣∣∣∣− 4

∣∣∣∣∣∣1 2

3 5

∣∣∣∣∣∣+ 6

∣∣∣∣∣∣1 −1

3 0

∣∣∣∣∣∣ = 2(−5)− 4(−1) + 6(3) = 12

The eigenvalues of a matrix A are λ values that satisfy (A− λI)x = 0. We can
figure out the eigenvalues by setting the determinant of this expression to 0:∣∣∣∣∣∣∣∣∣

2− λ 4 6

1 −1− λ 2

3 0 5− λ

∣∣∣∣∣∣∣∣∣
= (2− λ)

∣∣∣∣∣∣−1− λ 2

0 5− λ

∣∣∣∣∣∣− 4

∣∣∣∣∣∣1 2

3 5− λ

∣∣∣∣∣∣+ 6

∣∣∣∣∣∣1 −1− λ

3 0

∣∣∣∣∣∣
= (2− λ)(−1− λ)(5− λ)− 4(−1− λ) + 6(3 + 3λ)

= (λ2 − 7λ+ 10)(−1− λ)− 4(−1− λ)− 18(−1− λ)

= (λ2 − 7λ− 12)(−1− λ) = 0

= −

(
λ− 7−

√
97

2

)(
λ− 7 +

√
97

2

)
(λ+ 1) = 0

=⇒ λ1 =
7 +

√
97

2
, λ2 = −1, λ3 =

7−
√
97

2

Plugging these λ values into our equation (A− λI)x = 0, we can figure out the
corresponding eigenvectors from the general form of solutions to x:

2− λ 4 6

1 −1− λ 2

3 0 5− λ

 R1← 1
2−λR1

−−−−−−−−→


1 4

2−λ
6

2−λ

1 −1− λ 2

3 0 5− λ



1 4

2−λ
6

2−λ

1 −1− λ 2

3 0 5− λ

 R2←R2−R1−−−−−−−−→


1 4

2−λ
6

2−λ

0 λ2−λ−6
2−λ

−2−2λ
2−λ

3 0 5− λ
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1 4

2−λ
6

2−λ

0 λ2−λ−6
2−λ

−2−2λ
2−λ

3 0 5− λ

 R3←R3−3R1−−−−−−−−→


1 4

2−λ
6

2−λ

0 λ2−λ−6
2−λ

−2−2λ
2−λ

0 −12
2−λ

λ2−7λ−8
2−λ



1 4

2−λ
6

2−λ

0 λ2−λ−6
2−λ

−2−2λ
2−λ

0 −12
2−λ

λ2−7λ−8
2−λ

 R2← 2−λ

λ2−λ−6
R2

−−−−−−−−−−→


1 4

2−λ
6

2−λ

0 1 −2−2λ
λ2−λ−6

0 −12
2−λ

λ2−7λ−8
2−λ



1 4

2−λ
6

2−λ

0 1 −2−2λ
λ2−λ−6

0 −12
2−λ

λ2−7λ−8
2−λ

 R3←R3+
12

2−λR2

−−−−−−−−−−−→


1 4

2−λ
6

2−λ

0 1 −2−2λ
λ2−λ−6

0 0 (λ2−7λ−12)(−λ−1)
λ2−λ−6



1 4

2−λ
6

2−λ

0 1 −2−2λ
λ2−λ−6

0 0 (λ2−7λ−12)(−λ−1)
λ2−λ−6

 R1←R1− 4
2−λR2

−−−−−−−−−−−→


1 0 −6λ−14

λ2−λ−6

0 1 −2−2λ
λ2−λ−6

0 0 (λ2−7λ−12)(−λ−1)
λ2−λ−6


Since we derived the eigenvalues from the equation (λ2 − 7λ− 12)(−1− λ) = 0,
and the eigenvalues are not roots of the quadratic equation λ2−λ−6, the third
row of the matrix is a row of zeros for all eigenvalues. This means that the
values for x1 and x2 can only be determined in terms of x3, where x3 ∈ R−{0}:

x1 =
2(3λ+ 7)

(λ− 3)(λ+ 2)
x3, x2 =

2(λ+ 1)

(λ− 3)(λ+ 2)
x3

Setting x3 to an arbitrary nonzero value, we can derive the following expressions
for each eigenvector:

λ1 =
7 +

√
97

2
=⇒


x1

x2

x3

 = c


−3+

√
97

6

1
3

1

 , c ∈ R− {0}

λ2 = −1 =⇒


x1

x2

x3

 = c


−2

0

1

 , c ∈ R− {0}

λ3 =
7−

√
97

2
=⇒


x1

x2

x3

 = c


−3−

√
97

6

1
3

1

 , c ∈ R− {0}
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1.5 Matrix Proof

1.5.a Trace Commutativity

trace(AB) =

m∑
i=1

(AB)ii =

m∑
i=1

n∑
j=1

AijBji

=

n∑
j=1

m∑
i=1

BjiAij =

n∑
j=1

(BA)jj = trace(BA)

1.5.b Determinant Distributivity

Assume A is non-invertible. Since (AB)−1 is equivalent to B−1A−1, AB is also
non-invertible. The determinant of a non-invertible matrix is 0:

0 = 0 · det(B) =⇒ det(AB) = det(A) det(B)

Now assume that A is invertible. This means there’s a finite set of row reduction
operations that reduce A to the identity matrix. Each of these operations can
be represented via an elementary matrix product. Let A = EiEi−1 . . . E2E1I.
Since each matrix operation denotes a single row reduction operation, they each
affect the determinant of the matrix in front of them by a constant multiplier.
This multiplier is the scale itself for row scaling, −1 for row swapping, and 1
for row addition and subtraction operations. Let ei, ei−1, . . . , e2, e1 ∈ R − {0}
be the corresponding multipliers. Then:

det(A) = det(EiEi−1 . . . E2E1I)

= det(eiei−1 . . . e2e1I)

= eiei−1 . . . e2e1 det(I)

= eiei−1 . . . e2e1

When multiplying with another matrix B, the matrix A = EiEi−1 . . . E2E1I
can be thought of row reduction operations that operate on B instead of the
identity matrix. This permutes the determinant of B similarly:

det(AB) = det(EiEi−1 . . . E2E1B)

= det(eiei−1 . . . e2e1B)

= eiei−1 . . . e2e1 det(B)

From the previous equation, we know det(A) = eiei−1 . . . e2e1. Therefore:

det(A) = eiei−1 . . . e2e1 =⇒ det(AB) = det(A) det(B)

Since A is either invertible or non-invertible, we can conclude that:

det(AB) = det(A) det(B)
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1.5.c Determinant-Eigenvalue Relation

Let λ1, λ2, . . . , λn be eigenvalues of A. From the definition of the characteristic
polynomial of A, which is defined to be 0 at each eigenvalue:

pA(t) = det(A− tI) = (λ1 − t)(λ2 − t) . . . (λn − t)

Then, for t = 0 we have:

pA(0) = det(A) = λ1λ2 . . . λn =

n∏
i=1

λi

1.6 Examples

1.6.a Trace

A =


1 e 0

π 2 0

0 0 2

 , B =


1 0 0

e 2 0

π 0 1



AB =


1 + e2 2e 0

2e+ π 4 0

2π 0 2

 , BA =


1 e 0

2e+ π 4 + e2 0

π eπ 2


trace(AB) = trace(BA) = 7 + e2

1.6.b Determinant Distributivity

A =


1 e 0

π 2 0

0 0 2

 , B =


1 0 0

e 2 0

π 0 1

 , AB =


1 + e2 2e 0

2e+ π 4 0

2π 0 2


det(A) = 4− 2eπ, det(B) = 2, det(AB) = 8− 4eπ = det(A) det(B)

1.6.c Determinant-Eigenvalue Relation

A =


e+ π 1 1

0 5− 2e 1

0 0 e− π


The eigenvalues for A:

(λ−(e+π))(λ−(5−2e))(λ−(e−π)) = 0 =⇒ λ1 = e+π, λ2 = 5−2e, λ3 = e−π
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The determinant for A:

det(A) = 5e2 − 2e3 − 5π2 + 2eπ2 = (e+ π)(5− 2e)(e− π) = λ1λ2λ3 =

3∏
i=1

λi

2 Matrix Operations

2.1 Gradient and Hessian of f(x) = bTx

f(x) = bTx =

n∑
i=1

bixi

Gradient:

∇xf(x) =



∂f(x)
∂x1

∂f(x)
∂x2

. . .

∂f(x)
∂xn

 =


b1

b2

. . .

bn

 = b

Since the gradient, the first order derivatives are constant, the Hessian is a
matrix of zeroes:

∇2
xf(x) =



∂2f(x)
∂x2

1

∂2f(x)
∂x1∂x2

. . . ∂2f(x)
∂x1∂xn

∂2f(x)
∂x1∂x2

∂2f(x)
∂x2

2
. . . ∂2f(x)

∂x2∂xn

...
...

. . .
...

∂2f(x)
∂x1∂xn

∂2f(x)
∂x2∂xn

. . . ∂2f(x)
∂x2

n

 =


0 0 . . . 0

0 0 . . . 0
...

...
. . .

...

0 0 . . . 0


2.2 Gradient and Hessian of f(x) = xTAx+ bTx+ c

Using the matrix-vector multiplication definitions:

f(x) =

n∑
j=1

n∑
i=1

xjAjixi +

n∑
i=1

bixi + c

Calculating the gradient using the sum definitions:

∇xf(x) =


∂f(x)
∂x1

∂f(x)
∂x2

. . .

∂f(x)
∂xn

 =


(
∑n

i=1 A1ixi +
∑n

j=1 xjAj1) + b1

(
∑n

i=1 A2ixi +
∑n

j=1 xjAj2) + b2

. . .

(
∑n

i=1 Anixi +
∑n

j=1 xjAjn) + bn


The derivative for xTAx double-counts the intersection of the row and column
of A corresponding to the gradient index, however since

∂(Akkx
2
k)

∂xk
= 2Akkxk,
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this double counting coincides with the sums shown above. Then, by using the
fact that A is symmetric:

∇xf(x) =


2
∑n

i=1 A1ixi + b1

2
∑n

i=1 A2ixi + b2

. . .

2
∑n

i=1 Anixi + bn

 = 2Ax+ b

Differentiating the gradient with respect to x values once more, we can get the
Hessian:

∇2
xf(x) =



∂2f(x)
∂x2

1

∂2f(x)
∂x1∂x2

. . . ∂2f(x)
∂x1∂xn

∂2f(x)
∂x1∂x2

∂2f(x)
∂x2

2
. . . ∂2f(x)

∂x2∂xn

...
...

. . .
...

∂2f(x)
∂x1∂xn

∂2f(x)
∂x2∂xn

. . . ∂2f(x)
∂x2

n



=


2A11 2A12 . . . 2A1n

2A21 2A22 . . . 2A2n

...
...

. . .
...

2An1 2An2 . . . 2Ann

 = 2A

2.3 Gradient of f(X) = log detX

Note that we can also derive via first-order approximation (e.g. Boyd & Vanden-
bergh Sec A.4), cofactor/Laplace expansion. Here, we give an informal deriva-
tion using an outer product reparameterization + trace trick.

Using the derivative of log:

∇Xf(X) =
∂f(X)

∂X
=

1

detX

∂(detX)

∂X

For the determinant’s derivative, we first describe the adjugate matrix adj(X).
The adjugate matrix for an invertible matrix is the transpose of the cofactor
matrix CX , which can be used to invert a matrix as shown below:

X−1 =
1

detX
CT

X =
1

detX
adj(X)

Since the derivative we’re looking for yields a matrix, we should consider ∂(detX)
∂Xij

,

for all i, j values, which will fill the ith row and jth column in the derivative
matrix. This expression can be derived from the Jacobi formula. Furthermore,
using the fact that ∂X

∂Xij
is a matrix of zeroes except at the ij, it follows that
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∂X
∂Xij

may be expressed as an outer product uiu
⊤
j , where ui corresponds to the

i-th row of the n× n identity. Thus,

∂(detX)

∂Xij
= trace

(
adj(X)

∂X

∂Xij

)

Finally,

∂(log detX)

∂Xij
=

1

detX
trace

(
adj(X)

∂X

∂Xij

)
= trace

(
X−1

∂X

∂Xij

)
= trace

(
X−1uiu

⊤
j

)
= trace

(
u⊤j X

−1ui

)
= yji

where yji is the ji-th element of X−1 (i.e. the ij-th element of (X−1)⊤). So,
we have that ∇Xf(X) = (X−1)⊤. And since X is symmetric, we also have that
∇Xf(X) = X−1.

2.4 Examples

2.4.a Gradient and Hessian of f(x) = xTAx+ bTx+ c

A =

2 5

5 3

 , b =

1
7

 , c = 11

f

x1

x2

 = (2x2
1 + 10x1x2 + 3x2

2) + (x1 + 7x2) + 11

∇xf(x) =

∂f(x)
∂x1

∂f(x)
∂x1

 =

4x1 + 10x2 + 1

10x1 + 6x2 + 7

 =

 4 10

10 6

x1

x2

+

1
7

 = 2Ax+ b

∇2
xf(x) = ∇x

4x1 + 10x2 + 1

10x1 + 6x2 + 7

 =

 4 10

10 6

 = 2A

2.5 Least Squares Problem (note: 2022 version has m < n)

The problem minimizes the following distance function J : Rn → R, which
corresponds to Euclidean distance squared:

J(x) = (Ax− b)T (Ax− b)

= (xTAT − bT )(Ax− b)

= xTATAx− xTAT b− bTAx+ bT b
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The minimum point for this function can be found by setting its gradient to 0:

min
x

J(x) → ∂J(x)

∂x
= 0

Note that ATA is symmetric. Using the derivations from (2.2), we can directly
write the gradient as a vector:

∂J(x)

∂x
= 2ATAx−AT b− (bTA)T = 2ATAx− 2AT b = 0

=⇒ ATAx = AT b =⇒ x̂ = (ATA)−1AT b

Note that since A has rank n, the n× n matrix ATA is invertible.
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