## CSE 203B HW0

Oguz Paksoy [opaksoy@ucsd.edu]
January 2021

## 1 Matrix Properties

### 1.1 Linear System

$$
\left[\begin{array}{ccc}
2 & 4 & 6 \\
1 & -1 & 2 \\
3 & 0 & 5
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
1 \\
-1 \\
2
\end{array}\right]
$$

### 1.2 Range and Rank

Row reducing the matrix:

$$
\begin{gathered}
{\left[\begin{array}{ccc}
2 & 4 & 6 \\
1 & -1 & 2 \\
3 & 0 & 5
\end{array}\right] \xrightarrow{R_{1} \leftarrow R_{1} / 2}\left[\begin{array}{ccc}
1 & 2 & 3 \\
1 & -1 & 2 \\
3 & 0 & 5
\end{array}\right] \xrightarrow{R_{2} \leftarrow R_{2}-R_{1}}\left[\begin{array}{ccc}
1 & 2 & 3 \\
0 & -3 & -1 \\
3 & 0 & 5
\end{array}\right]} \\
{\left[\begin{array}{ccc}
1 & 2 & 3 \\
0 & -3 & -1 \\
3 & 0 & 5
\end{array}\right]} \\
{\left[\begin{array}{ccc}
1 & 2 & 3 \\
0 & 1 & 1 / 3 \\
0 & -6 & -4
\end{array}\right] \xrightarrow{R_{3} \leftarrow R_{3}-3 R_{1}}\left[\begin{array}{ccc}
1 & 2 & 3 \\
0 & -3 & -1 \\
0 & -6 & -4
\end{array}\right] \xrightarrow{R_{2} \leftarrow-R_{2} / 3}\left[\begin{array}{ccc}
1 & 2 & 3 \\
0 & 1 & 1 / 3 \\
0 & -6 & -4
\end{array}\right]} \\
{\left[\begin{array}{ccc}
1 & 2 & 3 \\
0 & 1 & 1 / 3 \\
0 & 0 & 1
\end{array}\right] \xrightarrow{R_{3} \leftarrow R_{3}+6 R_{2}}\left[\begin{array}{ccc}
1 & 2 & 3 \\
0 & 1 & 1 / 3 \\
0 & 0 & -2
\end{array}\right] \xrightarrow{R_{3} \leftarrow-R_{3} / 2}\left[\begin{array}{ccc}
1 & 2 & 3 \\
0 & 1 & 1 / 3 \\
0 & 0 & 1
\end{array}\right]} \\
\end{gathered}
$$

$$
\left[\begin{array}{lll}
1 & 2 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \xrightarrow{R_{1} \leftarrow R_{1}-2 R_{2}}\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]=I_{3}
$$

Since the reduced row echelon form of the matrix contains 3 pivots, its rank is 3. The range is the span of the column vectors that contain the pivot positions, which is onto $\mathbb{R}^{3}$ since the columns are independent of each other:

$$
R=\operatorname{span}\left\{\left[\begin{array}{l}
2 \\
1 \\
3
\end{array}\right],\left[\begin{array}{c}
4 \\
-1 \\
0
\end{array}\right],\left[\begin{array}{l}
6 \\
2 \\
5
\end{array}\right]\right\}=\mathbb{R}^{3}
$$

### 1.3 Nullspace

The nullspace is the set of points that satisfy the following equation:

$$
\left[\begin{array}{ccc}
2 & 4 & 6 \\
1 & -1 & 2 \\
3 & 0 & 5
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Using row reduction on the augmented form, the same way it was done in question (1.2):

$$
\left[\begin{array}{ccc|c}
2 & 4 & 6 & 0 \\
1 & -1 & 2 & 0 \\
3 & 0 & 5 & 0
\end{array}\right] \xrightarrow{(1.2) \text { row reductions }}\left[\begin{array}{lll|l}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right] \Longrightarrow\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The nullspace is therefore a space which uses the 0 vector as its basis, which means that it only spans a single point.
In general, the number of dimensions of the range and the number of dimensions of the nullspace add up to the number of columns in a matrix. Here, we have a 3 -dimensional range, and a 0 -dimensional nullspace, which adds up to 3 , the number of columns in our matrix. Furthermore, vectors in the nullspace (nullspace $(A)$ ) are orthogonal to the vectors in the range of the transpose (range $\left(A^{T}\right)$ ). Since our nullspace only consists of the 0 vector, then by definition, the dot product of any vector with the vectors in the nullspace is 0 .

### 1.4 Trace, Determinant, Eigenvalues, Eigenvectors

The trace of a matrix is the sum of the elements along the main diagonal:

$$
\operatorname{trace}\left(\left[\begin{array}{ccc}
2 & 4 & 6 \\
1 & -1 & 2 \\
3 & 0 & 5
\end{array}\right]\right)=2+(-1)+5=6
$$

The determinant for the matrix can be calculated as follows:

$$
\left|\begin{array}{ccc}
2 & 4 & 6 \\
1 & -1 & 2 \\
3 & 0 & 5
\end{array}\right|=2\left|\begin{array}{cc}
-1 & 2 \\
0 & 5
\end{array}\right|-4\left|\begin{array}{cc}
1 & 2 \\
3 & 5
\end{array}\right|+6\left|\begin{array}{cc}
1 & -1 \\
3 & 0
\end{array}\right|=2(-5)-4(-1)+6(3)=12
$$

The eigenvalues of a matrix $A$ are $\lambda$ values that satisfy $(A-\lambda I) x=0$. We can figure out the eigenvalues by setting the determinant of this expression to 0 :

$$
\begin{aligned}
& \left|\begin{array}{ccc}
2-\lambda & 4 & 6 \\
1 & -1-\lambda & 2 \\
3 & 0 & 5-\lambda
\end{array}\right| \\
& =(2-\lambda)\left|\begin{array}{cc}
-1-\lambda & 2 \\
0 & 5-\lambda
\end{array}\right|-4\left|\begin{array}{cc}
1 & 2 \\
3 & 5-\lambda
\end{array}\right|+6\left|\begin{array}{cc}
1 & -1-\lambda \\
3 & 0
\end{array}\right| \\
& =(2-\lambda)(-1-\lambda)(5-\lambda)-4(-1-\lambda)+6(3+3 \lambda) \\
& =\left(\lambda^{2}-7 \lambda+10\right)(-1-\lambda)-4(-1-\lambda)-18(-1-\lambda) \\
& =\left(\lambda^{2}-7 \lambda-12\right)(-1-\lambda)=0 \\
& =-\left(\lambda-\frac{7-\sqrt{97}}{2}\right)\left(\lambda-\frac{7+\sqrt{97}}{2}\right)(\lambda+1)=0 \\
& \Longrightarrow \lambda_{1}=\frac{7+\sqrt{97}}{2}, \lambda_{2}=-1, \lambda_{3}=\frac{7-\sqrt{97}}{2}
\end{aligned}
$$

Plugging these $\lambda$ values into our equation $(A-\lambda I) x=0$, we can figure out the corresponding eigenvectors from the general form of solutions to $x$ :

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
2-\lambda & 4 & 6 \\
1 & -1-\lambda & 2 \\
3 & 0 & 5-\lambda
\end{array}\right] \xrightarrow{R_{1} \leftarrow \frac{1}{2-\lambda} R_{1}}\left[\begin{array}{ccc}
1 & \frac{4}{2-\lambda} & \frac{6}{2-\lambda} \\
1 & -1-\lambda & 2 \\
3 & 0 & 5-\lambda
\end{array}\right]} \\
& {\left[\begin{array}{ccc}
1 & \frac{4}{2-\lambda} & \frac{6}{2-\lambda} \\
1 & -1-\lambda & 2 \\
3 & 0 & 5-\lambda
\end{array}\right] \xrightarrow{R_{2} \leftarrow R_{2}-R_{1}}\left[\begin{array}{ccc}
1 & \frac{4}{2-\lambda} & \frac{6}{2-\lambda} \\
0 & \frac{\lambda^{2}-\lambda-6}{2-\lambda} & \frac{-2-2 \lambda}{2-\lambda} \\
3 & 0 & 5-\lambda
\end{array}\right]}
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
1 & \frac{4}{2-\lambda} & \frac{6}{2-\lambda} \\
0 & \frac{\lambda^{2}-\lambda-6}{2-\lambda} & \frac{-2-2 \lambda}{2-\lambda} \\
3 & 0 & 5-\lambda
\end{array}\right] \xrightarrow{R_{3} \leftarrow R_{3}-3 R_{1}}\left[\begin{array}{ccc}
1 & \frac{4}{2-\lambda} & \frac{6}{2-\lambda} \\
0 & \frac{\lambda^{2}-\lambda-6}{2-\lambda} & \frac{-2-2 \lambda}{2-\lambda} \\
0 & \frac{-12}{2-\lambda} & \frac{\lambda^{2}-7 \lambda-8}{2-\lambda}
\end{array}\right]} \\
& {\left[\begin{array}{ccc}
1 & \frac{4}{2-\lambda} & \frac{6}{2-\lambda} \\
0 & \frac{\lambda^{2}-\lambda-6}{2-\lambda} & \frac{-2-2 \lambda}{2-\lambda} \\
0 & \frac{-12}{2-\lambda} & \frac{\lambda^{2}-7 \lambda-8}{2-\lambda}
\end{array}\right] \xrightarrow{R_{2} \leftarrow \frac{2-\lambda}{\lambda^{2}-\lambda-6} R_{2}}\left[\begin{array}{ccc}
1 & \frac{4}{2-\lambda} & \frac{6}{2-\lambda} \\
0 & 1 & \frac{-2-2 \lambda}{\lambda^{2}-\lambda-6} \\
0 & \frac{-12}{2-\lambda} & \frac{\lambda^{2}-7 \lambda-8}{2-\lambda}
\end{array}\right]} \\
& {\left[\begin{array}{ccc}
1 & \frac{4}{2-\lambda} & \frac{6}{2-\lambda} \\
0 & 1 & \frac{-2-2 \lambda}{\lambda^{2}-\lambda-6} \\
0 & \frac{-12}{2-\lambda} & \frac{\lambda^{2}-7 \lambda-8}{2-\lambda}
\end{array}\right] \xrightarrow{R_{3} \leftarrow R_{3}+\frac{12}{2-\lambda} R_{2}}\left[\begin{array}{ccc}
1 & \frac{4}{2-\lambda} & \frac{6}{2-\lambda} \\
0 & 1 & \frac{-2-2 \lambda}{\lambda^{2}-\lambda-6} \\
0 & 0 & \frac{\left(\lambda^{2}-7 \lambda-12\right)(-\lambda-1)}{\lambda^{2}-\lambda-6}
\end{array}\right]} \\
& {\left[\begin{array}{ccc}
1 & \frac{4}{2-\lambda} & \frac{6}{2-\lambda} \\
0 & 1 & \frac{-2-2 \lambda}{\lambda^{2}-\lambda-6} \\
0 & 0 & \frac{\left(\lambda^{2}-7 \lambda-12\right)(-\lambda-1)}{\lambda^{2}-\lambda-6}
\end{array}\right] \stackrel{ }{R_{1} \leftarrow R_{1}-\frac{4}{2-\lambda} R_{2}}\left[\begin{array}{ccc}
1 & 0 & \frac{-6 \lambda-14}{\lambda^{2}-\lambda-6} \\
0 & 1 & \frac{-2-2 \lambda}{\lambda^{2}-\lambda-6} \\
0 & 0 & \frac{\left(\lambda^{2}-7 \lambda-12\right)(-\lambda-1)}{\lambda^{2}-\lambda-6}
\end{array}\right]}
\end{aligned}
$$

Since we derived the eigenvalues from the equation $\left(\lambda^{2}-7 \lambda-12\right)(-1-\lambda)=0$, and the eigenvalues are not roots of the quadratic equation $\lambda^{2}-\lambda-6$, the third row of the matrix is a row of zeros for all eigenvalues. This means that the values for $x_{1}$ and $x_{2}$ can only be determined in terms of $x_{3}$, where $x_{3} \in \mathbb{R}-\{0\}$ :

$$
x_{1}=\frac{2(3 \lambda+7)}{(\lambda-3)(\lambda+2)} x_{3}, \quad x_{2}=\frac{2(\lambda+1)}{(\lambda-3)(\lambda+2)} x_{3}
$$

Setting $x_{3}$ to an arbitrary nonzero value, we can derive the following expressions for each eigenvector:

$$
\begin{aligned}
\lambda_{1}=\frac{7+\sqrt{97}}{2} & \Longrightarrow\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=c\left[\begin{array}{c}
\frac{-3+\sqrt{97}}{6} \\
\frac{1}{3} \\
1
\end{array}\right], c \in \mathbb{R}-\{0\} \\
\lambda_{2}=-1 & \Longrightarrow\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=c\left[\begin{array}{c}
-2 \\
0 \\
1
\end{array}\right], c \in \mathbb{R}-\{0\} \\
\lambda_{3}=\frac{7-\sqrt{97}}{2} & \Longrightarrow\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=c\left[\begin{array}{c}
\frac{-3-\sqrt{97}}{6} \\
\frac{1}{3} \\
1
\end{array}\right], c \in \mathbb{R}-\{0\}
\end{aligned}
$$

### 1.5 Matrix Proof

## 1.5.a Trace Commutativity

$$
\begin{aligned}
\operatorname{trace}(A B) & =\sum_{i=1}^{m}(A B)_{i i}=\sum_{i=1}^{m} \sum_{j=1}^{n} A_{i j} B_{j i} \\
& =\sum_{j=1}^{n} \sum_{i=1}^{m} B_{j i} A_{i j}=\sum_{j=1}^{n}(B A)_{j j}=\operatorname{trace}(B A)
\end{aligned}
$$

## 1.5.b Determinant Distributivity

Assume $A$ is non-invertible. Since $(A B)^{-1}$ is equivalent to $B^{-1} A^{-1}, A B$ is also non-invertible. The determinant of a non-invertible matrix is 0 :

$$
0=0 \cdot \operatorname{det}(B) \Longrightarrow \operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)
$$

Now assume that $A$ is invertible. This means there's a finite set of row reduction operations that reduce $A$ to the identity matrix. Each of these operations can be represented via an elementary matrix product. Let $A=E_{i} E_{i-1} \ldots E_{2} E_{1} I$. Since each matrix operation denotes a single row reduction operation, they each affect the determinant of the matrix in front of them by a constant multiplier. This multiplier is the scale itself for row scaling, -1 for row swapping, and 1 for row addition and subtraction operations. Let $e_{i}, e_{i-1}, \ldots, e_{2}, e_{1} \in \mathbb{R}-\{0\}$ be the corresponding multipliers. Then:

$$
\begin{aligned}
\operatorname{det}(A) & =\operatorname{det}\left(E_{i} E_{i-1} \ldots E_{2} E_{1} I\right) \\
& =\operatorname{det}\left(e_{i} e_{i-1} \ldots e_{2} e_{1} I\right) \\
& =e_{i} e_{i-1} \ldots e_{2} e_{1} \operatorname{det}(I) \\
& =e_{i} e_{i-1} \ldots e_{2} e_{1}
\end{aligned}
$$

When multiplying with another matrix $B$, the matrix $A=E_{i} E_{i-1} \ldots E_{2} E_{1} I$ can be thought of row reduction operations that operate on $B$ instead of the identity matrix. This permutes the determinant of $B$ similarly:

$$
\begin{aligned}
\operatorname{det}(A B) & =\operatorname{det}\left(E_{i} E_{i-1} \ldots E_{2} E_{1} B\right) \\
& =\operatorname{det}\left(e_{i} e_{i-1} \ldots e_{2} e_{1} B\right) \\
& =e_{i} e_{i-1} \ldots e_{2} e_{1} \operatorname{det}(B)
\end{aligned}
$$

From the previous equation, we know $\operatorname{det}(A)=e_{i} e_{i-1} \ldots e_{2} e_{1}$. Therefore:

$$
\operatorname{det}(A)=e_{i} e_{i-1} \ldots e_{2} e_{1} \Longrightarrow \operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)
$$

Since $A$ is either invertible or non-invertible, we can conclude that:

$$
\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)
$$

## 1.5.c Determinant-Eigenvalue Relation

Let $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ be eigenvalues of $A$. From the definition of the characteristic polynomial of $A$, which is defined to be 0 at each eigenvalue:

$$
p_{A}(t)=\operatorname{det}(A-t I)=\left(\lambda_{1}-t\right)\left(\lambda_{2}-t\right) \ldots\left(\lambda_{n}-t\right)
$$

Then, for $t=0$ we have:

$$
p_{A}(0)=\operatorname{det}(A)=\lambda_{1} \lambda_{2} \ldots \lambda_{n}=\prod_{i=1}^{n} \lambda_{i}
$$

### 1.6 Examples

## 1.6.a Trace

$$
\begin{gathered}
A=\left[\begin{array}{lll}
1 & e & 0 \\
\pi & 2 & 0 \\
0 & 0 & 2
\end{array}\right], B=\left[\begin{array}{lll}
1 & 0 & 0 \\
e & 2 & 0 \\
\pi & 0 & 1
\end{array}\right] \\
A B=\left[\begin{array}{ccc}
1+e^{2} & 2 e & 0 \\
2 e+\pi & 4 & 0 \\
2 \pi & 0 & 2
\end{array}\right], B A=\left[\begin{array}{ccc}
1 & e & 0 \\
2 e+\pi & 4+e^{2} & 0 \\
\pi & e \pi & 2
\end{array}\right] \\
\operatorname{trace}(A B)=\operatorname{trace}(B A)=7+e^{2}
\end{gathered}
$$

## 1.6.b Determinant Distributivity

$$
\begin{gathered}
A=\left[\begin{array}{lll}
1 & e & 0 \\
\pi & 2 & 0 \\
0 & 0 & 2
\end{array}\right], B=\left[\begin{array}{ccc}
1 & 0 & 0 \\
e & 2 & 0 \\
\pi & 0 & 1
\end{array}\right], A B=\left[\begin{array}{ccc}
1+e^{2} & 2 e & 0 \\
2 e+\pi & 4 & 0 \\
2 \pi & 0 & 2
\end{array}\right] \\
\operatorname{det}(A)=4-2 e \pi, \operatorname{det}(B)=2, \operatorname{det}(A B)=8-4 e \pi=\operatorname{det}(A) \operatorname{det}(B)
\end{gathered}
$$

## 1.6.c Determinant-Eigenvalue Relation

$$
A=\left[\begin{array}{ccc}
e+\pi & 1 & 1 \\
0 & 5-2 e & 1 \\
0 & 0 & e-\pi
\end{array}\right]
$$

The eigenvalues for $A$ :
$(\lambda-(e+\pi))(\lambda-(5-2 e))(\lambda-(e-\pi))=0 \Longrightarrow \lambda_{1}=e+\pi, \lambda_{2}=5-2 e, \lambda_{3}=e-\pi$

The determinant for $A$ :

$$
\operatorname{det}(A)=5 e^{2}-2 e^{3}-5 \pi^{2}+2 e \pi^{2}=(e+\pi)(5-2 e)(e-\pi)=\lambda_{1} \lambda_{2} \lambda_{3}=\prod_{i=1}^{3} \lambda_{i}
$$

## 2 Matrix Operations

### 2.1 Gradient and Hessian of $f(x)=b^{T} x$

$$
f(x)=b^{T} x=\sum_{i=1}^{n} b_{i} x_{i}
$$

Gradient:

$$
\nabla_{x} f(x)=\left[\begin{array}{c}
\frac{\partial f(x)}{\partial x_{1}} \\
\frac{\partial f(x)}{\partial x_{2}} \\
\cdots \\
\frac{\partial f(x)}{\partial x_{n}}
\end{array}\right]=\left[\begin{array}{c}
b_{1} \\
b_{2} \\
\cdots \\
b_{n}
\end{array}\right]=b
$$

Since the gradient, the first order derivatives are constant, the Hessian is a matrix of zeroes:

$$
\nabla_{x}^{2} f(x)=\left[\begin{array}{cccc}
\frac{\partial^{2} f(x)}{\partial x_{1}^{2}} & \frac{\partial^{2} f(x)}{\partial x_{1} \partial x_{2}} & \ldots & \frac{\partial^{2} f(x)}{\partial x_{1} \partial x_{n}} \\
\frac{\partial^{2} f(x)}{\partial x_{1} \partial x_{2}} & \frac{\partial^{2} f(x)}{\partial x_{2}^{2}} & \ldots & \frac{\partial^{2} f(x)}{\partial x_{2} \partial x_{n}} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial^{2} f(x)}{\partial x_{1} \partial x_{n}} & \frac{\partial^{2} f(x)}{\partial x_{2} \partial x_{n}} & \ldots & \frac{\partial^{2} f(x)}{\partial x_{n}^{2}}
\end{array}\right]=\left[\begin{array}{cccc}
0 & 0 & \ldots & 0 \\
0 & 0 & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & 0
\end{array}\right]
$$

### 2.2 Gradient and Hessian of $f(x)=x^{T} A x+b^{T} x+c$

Using the matrix-vector multiplication definitions:

$$
f(x)=\sum_{j=1}^{n} \sum_{i=1}^{n} x_{j} A_{j i} x_{i}+\sum_{i=1}^{n} b_{i} x_{i}+c
$$

Calculating the gradient using the sum definitions:

$$
\nabla_{x} f(x)=\left[\begin{array}{c}
\frac{\partial f(x)}{\partial x_{1}} \\
\frac{\partial f(x)}{\partial x_{2}} \\
\cdots \\
\frac{\partial f(x)}{\partial x_{n}}
\end{array}\right]=\left[\begin{array}{c}
\left(\sum_{i=1}^{n} A_{1 i} x_{i}+\sum_{j=1}^{n} x_{j} A_{j 1}\right)+b_{1} \\
\left(\sum_{i=1}^{n} A_{2 i} x_{i}+\sum_{j=1}^{n} x_{j} A_{j 2}\right)+b_{2} \\
\ldots \\
\left(\sum_{i=1}^{n} A_{n i} x_{i}+\sum_{j=1}^{n} x_{j} A_{j n}\right)+b_{n}
\end{array}\right]
$$

The derivative for $x^{T} A x$ double-counts the intersection of the row and column of $A$ corresponding to the gradient index, however since $\frac{\partial\left(A_{k k} x_{k}^{2}\right)}{\partial x_{k}}=2 A_{k k} x_{k}$,
this double counting coincides with the sums shown above. Then, by using the fact that $A$ is symmetric:

$$
\nabla_{x} f(x)=\left[\begin{array}{c}
2 \sum_{i=1}^{n} A_{1 i} x_{i}+b_{1} \\
2 \sum_{i=1}^{n} A_{2 i} x_{i}+b_{2} \\
\cdots \\
2 \sum_{i=1}^{n} A_{n i} x_{i}+b_{n}
\end{array}\right]=2 A x+b
$$

Differentiating the gradient with respect to $x$ values once more, we can get the Hessian:

$$
\begin{aligned}
\nabla_{x}^{2} f(x) & =\left[\begin{array}{cccc}
\frac{\partial^{2} f(x)}{\partial x_{1}^{2}} & \frac{\partial^{2} f(x)}{\partial x_{1} \partial x_{2}} & \ldots & \frac{\partial^{2} f(x)}{\partial x_{1} \partial x_{n}} \\
\frac{\partial^{2} f(x)}{\partial x_{1} \partial x_{2}} & \frac{\partial^{2} f(x)}{\partial x_{2}^{2}} & \ldots & \frac{\partial^{2} f(x)}{\partial x_{2} \partial x_{n}} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial^{2} f(x)}{\partial x_{1} \partial x_{n}} & \frac{\partial^{2} f(x)}{\partial x_{2} \partial x_{n}} & \ldots & \frac{\partial^{2} f(x)}{\partial x_{n}^{2}}
\end{array}\right] \\
& =\left[\begin{array}{cccc}
2 A_{11} & 2 A_{12} & \ldots & 2 A_{1 n} \\
2 A_{21} & 2 A_{22} & \ldots & 2 A_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
2 A_{n 1} & 2 A_{n 2} & \ldots & 2 A_{n n}
\end{array}\right]=2 A
\end{aligned}
$$

### 2.3 Gradient of $f(X)=\log \operatorname{det} X$

Note that we can also derive via first-order approximation (e.g. Boyd \& Vandenbergh Sec A.4), cofactor/Laplace expansion. Here, we give an informal derivation using an outer product reparameterization + trace trick.

Using the derivative of log:

$$
\nabla_{X} f(X)=\frac{\partial f(X)}{\partial X}=\frac{1}{\operatorname{det} X} \frac{\partial(\operatorname{det} X)}{\partial X}
$$

For the determinant's derivative, we first describe the adjugate matrix $\operatorname{adj}(X)$. The adjugate matrix for an invertible matrix is the transpose of the cofactor matrix $C_{X}$, which can be used to invert a matrix as shown below:

$$
X^{-1}=\frac{1}{\operatorname{det} X} C_{X}^{T}=\frac{1}{\operatorname{det} X} \operatorname{adj}(X)
$$

Since the derivative we're looking for yields a matrix, we should consider $\frac{\partial(\operatorname{det} X)}{\partial X_{i j}}$, for all $i, j$ values, which will fill the $i$ th row and $j$ th column in the derivative matrix. This expression can be derived from the Jacobi formula. Furthermore, using the fact that $\frac{\partial X}{\partial X_{i j}}$ is a matrix of zeroes except at the $i j$, it follows that
$\frac{\partial X}{\partial X_{i j}}$ may be expressed as an outer product $u_{i} u_{j}^{\top}$, where $u_{i}$ corresponds to the $i$-th row of the $n \times n$ identity. Thus,

$$
\frac{\partial(\operatorname{det} X)}{\partial X_{i j}}=\operatorname{trace}\left(\operatorname{adj}(X) \frac{\partial X}{\partial X_{i j}}\right)
$$

Finally,

$$
\begin{aligned}
\frac{\partial(\log \operatorname{det} X)}{\partial X_{i j}} & =\frac{1}{\operatorname{det} X} \operatorname{trace}\left(\operatorname{adj}(X) \frac{\partial X}{\partial X_{i j}}\right) \\
& =\operatorname{trace}\left(X^{-1} \frac{\partial X}{\partial X_{i j}}\right) \\
& =\operatorname{trace}\left(X^{-1} u_{i} u_{j}^{\top}\right) \\
& =\operatorname{trace}\left(u_{j}^{\top} X^{-1} u_{i}\right)=y_{j i}
\end{aligned}
$$

where $y_{j i}$ is the $j i$-th element of $X^{-1}$ (i.e. the $i j$-th element of $\left.\left(X^{-1}\right)^{\top}\right)$. So, we have that $\nabla_{X} f(X)=\left(X^{-1}\right)^{\top}$. And since $X$ is symmetric, we also have that $\nabla_{X} f(X)=X^{-1}$.

### 2.4 Examples

2.4.a Gradient and Hessian of $f(x)=x^{T} A x+b^{T} x+c$

$$
\begin{gathered}
A=\left[\begin{array}{ll}
2 & 5 \\
5 & 3
\end{array}\right], b=\left[\begin{array}{l}
1 \\
7
\end{array}\right], c=11 \\
f\left(\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]\right)=\left(2 x_{1}^{2}+10 x_{1} x_{2}+3 x_{2}^{2}\right)+\left(x_{1}+7 x_{2}\right)+11 \\
\nabla_{x} f(x)=\left[\begin{array}{l}
\frac{\partial f(x)}{\partial x_{1}} \\
\frac{\partial f(x)}{\partial x_{1}}
\end{array}\right]=\left[\begin{array}{l}
4 x_{1}+10 x_{2}+1 \\
10 x_{1}+6 x_{2}+7
\end{array}\right]=\left[\begin{array}{cc}
4 & 10 \\
10 & 6
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+\left[\begin{array}{l}
1 \\
7
\end{array}\right]=2 A x+b \\
\nabla_{x}^{2} f(x)=\nabla_{x}\left(\left[\begin{array}{l}
4 x_{1}+10 x_{2}+1 \\
10 x_{1}+6 x_{2}+7
\end{array}\right]\right)=\left[\begin{array}{cc}
4 & 10 \\
10 & 6
\end{array}\right]=2 A
\end{gathered}
$$

### 2.5 Least Squares Problem (note: 2022 version has $m<n$ )

The problem minimizes the following distance function $J: \mathbb{R}^{n} \rightarrow \mathbb{R}$, which corresponds to Euclidean distance squared:

$$
\begin{aligned}
J(x) & =(A x-b)^{T}(A x-b) \\
& =\left(x^{T} A^{T}-b^{T}\right)(A x-b) \\
& =x^{T} A^{T} A x-x^{T} A^{T} b-b^{T} A x+b^{T} b
\end{aligned}
$$

The minimum point for this function can be found by setting its gradient to 0 :

$$
\min _{x} J(x) \rightarrow \frac{\partial J(x)}{\partial x}=0
$$

Note that $A^{T} A$ is symmetric. Using the derivations from (2.2), we can directly write the gradient as a vector:

$$
\begin{aligned}
\frac{\partial J(x)}{\partial x} & =2 A^{T} A x-A^{T} b-\left(b^{T} A\right)^{T}=2 A^{T} A x-2 A^{T} b=0 \\
& \Longrightarrow A^{T} A x=A^{T} b \Longrightarrow \hat{x}=\left(A^{T} A\right)^{-1} A^{T} b
\end{aligned}
$$

Note that since $A$ has rank $n$, the $n \times n$ matrix $A^{T} A$ is invertible.

