CSE203B Convex Optimization Midterm Examination, 2/18/2020 Name \qquad

1 True or False

Circle your choice of true or false. Use a short sentence to explain your choice. (20 points)

1. The union of two convex sets is convex.

True False
False. Union operation does not preserve convexity.
2. Given two convex sets S_{1} and S_{2} in the same domain, then set $S_{3}=\left\{x \mid x \in S_{1}, x \notin S_{2}\right\}$ is convex.

True False
False. Similar reason as (1).
3. Given two convex sets $S_{1}, S_{2} \subset R^{n}$, then set $S_{3}=\left\{x_{1}-x_{2} \mid x_{1} \in S_{1}, x_{2} \in S_{2}\right\}$ is also convex.

True False
True. The sum of two convex sets is still convex.
4. Function $f(x)=-x \log x, x \in R_{++}$is a convex function

True False
False. Concave.
5. The conjugate function $f^{*}(y)$ is convex even if function $f(x)$ is not convex.

True False
True. It is the pointwise maximum of a family of convex functions of y .
6. Function $f(x)=\log \sum_{i=1: n} e^{a_{i} \times x_{i}}$, where a_{i} and $x_{i} \in R$ for $i=1, \ldots, n$, is convex.

True False
True. Refer to homework 2.
7. The equation $x_{1}^{3} x_{2}^{-1}+x_{3}^{2} x_{4}^{5}=0$ for $x \in R_{+}^{4}$ can be converted into a linear equality constraint using the standard geometric programming formulation.
True False
False. Not linear.
8. In geometric programming, a posynomial function $f(x)$ may not be convex, but can be converted into convex form.
True False
True. See geometric programming procedure in the textbook.
9. In second order cone programming, the set $\left\{x \mid\|A x+b\|_{2} \leq c^{T} x+d\right\}$, where $A \in R^{m \times n}, x, b, c \in R^{n}$ and $d \in R$, is convex.
True False
True/False. The second order norm is a convex set./There are typos in dimensions.
10. The inequality $\sup _{z \in \mathcal{Z}} \inf _{w \in W} f(w, z) \leq \inf _{w \in W} \sup p_{z \in Z} f(w, z)$ is true even when function $f(w, z)$ is not convex.
True False
True. It is the statement of max-min property.

2 Theorems and Proofs

Problem 2.1 Prove the following optimality criterion for a convex optimization problem. Suppose that the problem is convex and the objective function $f_{0}(x)$ is differentialble, prove that \bar{x} is optimal if and only if \bar{x} is feasible and $\nabla f_{0}(\bar{x})^{T}(y-\bar{x}) \geq 0$ for all feasible y. (10 points)

Given $f_{0}(x)$ is convex and differentiable, show that \bar{x} is optimal $\Longleftrightarrow \bar{x}$ is feasible and $\nabla f_{o}(\bar{x})^{T}(y-\bar{x}) \geq 0$ for all feasible y.
\Leftarrow : Since f_{o} is convex over x and differentiable, the first order condition holds. Given $\nabla f_{o}(\bar{x})^{T}(y-\bar{x}) \geq$ 0 , we have $f_{o}(y)-f_{o}(x)$ for all feasible y , which shows that \bar{x} is optimal.
\Rightarrow : Suppose $\nabla f_{o}(\bar{x})^{T}(y-\bar{x})<0$ for all y , and let $z=\lambda y+(1-\lambda) \bar{x}$, then following the first order condition, we have $f_{o}(z)=f_{o}(x)+\nabla f_{o}(\bar{x})^{T}(z-\bar{x})$. since $\nabla f_{o}(\bar{x})^{T}(z-\bar{x})<0$, we arrive at $f_{o}(z)<f_{o}(x)$, which contradicts to the statement that \bar{x} is optimal. Therefore, we show that given \bar{x} is optimal, $\nabla f_{o}(\bar{x})^{T}(y-$ $\bar{x}) \geq 0$ for all y .

Problem 2.2 Prove that the Lagrange dual function is concave even if the primal problem is not convex. (10 points)

$$
\begin{align*}
g(\lambda, v) & =\inf f_{x \in D} L(x, \lambda, v) \\
& =\inf f_{x \in D}\left(f_{o}(x)+\sum_{i=1}^{m} \lambda_{i} f_{i}(x)+\sum_{i=1}^{p} v_{i} h_{i}(x)\right) \tag{1}
\end{align*}
$$

Since the dual function is the pointwise infimum of a family of affine functions of (λ, v), it is concave even when the primal problem is not convex.

3 Case Studies

Problem 3.1 Dual Cone: Given a cone $K=\left\{\theta_{1} u_{1}+\theta_{2} u_{2} \mid u_{1}=[2,-1,3]^{T}, u_{2}=[-2,1,0]^{T}, \theta_{1} \geq 0, \theta_{2} \geq 0\right\}$, find the dual cone of K. (15 points)

Ans: The cone can be expressed as

$$
K=\{A \theta \mid \theta \succeq 0\}, \quad A=\left[u_{1}, u_{2}\right]
$$

According to the definition of dual cone, we have

$$
K^{*}=\left\{x \mid A^{T} x \succeq 0\right\}=\left\{x \left\lvert\,\left[\begin{array}{ccc}
2 & -1 & 3 \\
-2 & 1 & 0
\end{array}\right] x \succeq 0\right.\right\}
$$

For the explicit expression, you need to find a basis for the dual cone. Notice that $A^{T} x \succeq 0$ expresses the intersection of two halfspaces $u_{1}^{T} x \geq 0$ and $u_{2}^{T} x \geq 0$, as shown in the following figure.

Figure 1: The dual cone is expressed as the intersection of two halfspaces $u_{1}^{T} x \geq 0$ and $u_{2}^{T} x \geq 0$. To explicitly express the dual cone, we need four vectors. For example, we can choose

$$
K^{*}=\left\{\theta_{1} u_{1}+\theta_{2} u_{2}+\theta_{3} u_{3}+\theta_{4} u_{4} \left\lvert\, u_{1}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]\right., u_{2}=\left[\begin{array}{c}
-2 \\
1 \\
5 / 3
\end{array}\right], u_{3}=\left[\begin{array}{l}
1 \\
2 \\
0
\end{array}\right], u_{4}=\left[\begin{array}{c}
-1 \\
-2 \\
0
\end{array}\right], \theta_{i} \geq 0 \text { for } i=1, \ldots, 4\right\} .
$$

Problem 3.2 Conjugate Function: Given a function $f(x)=x_{1}+2 x_{2}+3 x_{3}^{2}, x \in R^{3}$, derive the conjugate function $f^{*}(y), y \in R^{3}$. (15 points)

Ans: According to the definition, the conjugate function is expressed as

$$
f^{*}(y)=\sup _{x \in \operatorname{dom} f}\left(y^{T} x-f(x)\right) .
$$

We have the gradient of function

$$
\nabla_{x}\left(y^{T} x-f(x)\right)=y-\left[\begin{array}{c}
1 \\
2 \\
6 x_{3}
\end{array}\right] .
$$

If $y_{1} \neq 1$ or $y_{2} \neq 2$, the function is unbounded. Therefore, we have the domain $y_{1}=1$ and $y_{2}=2$. When $y_{3}=6 x_{3}$ the supremum is achieved.

$$
f^{*}(y)=\left\{\begin{array}{l}
\frac{y_{3}^{2}}{12}, y_{1}=1, y_{2}=2 \\
\infty, \text { otherwise }
\end{array}\right.
$$

Problem 3.3 Primal Dual Formulation: Given a linear programming problem,
minimize $f_{0}(x)=c^{T} x$
subject to $A x \leq b$, and $P x=q$, where $x \in R_{+}^{n}$ (i.e. $x \succeq 0$).
Derive the dual problem. (10 points)
The Lagrangian:

$$
\begin{gathered}
L(x, \lambda, v)=c^{T} x+\lambda^{T}(A x-b)+v^{T}(P x-q)+\lambda_{2}^{T}(-x) \\
=\left(c^{T}+\lambda^{T} A+v^{T} P-\lambda_{2}^{T}\right) x-\lambda^{T} b-v^{T} q
\end{gathered}
$$

The dual function:

$$
\begin{gathered}
g(\lambda, v)=\inf _{x} L(x, \lambda, v) \\
g(\lambda, v)=\left\{\begin{array}{cl}
-\lambda^{T} b-v^{T} q & c+A^{T} \lambda+P^{T} v-\lambda_{2}=0 \\
-\infty & \text { Otherwise }
\end{array}\right.
\end{gathered}
$$

As $\lambda_{2} \succeq 0, c+A^{T} \lambda+P^{T} v-\lambda_{2}=0$ is equivalent to $c+A^{T} \lambda+P^{T} v \succeq 0$
So the dual problem is:

$$
\begin{gathered}
\max -\lambda^{T} b-v^{T} q \\
\text { s.t. } c+A^{T} \lambda+P^{T} v \succeq 0 \\
\lambda \succeq 0
\end{gathered}
$$

4 Problems from Exercises

Problem 4.1 Let $C \subset R^{n}$ be the solution set of a quadratic inequality, $C=\left\{x \in R^{n} \mid x^{T} A x+b^{T} x+c \leq 0\right\}$, with $A \in S^{n}, b \in R^{n}$, and $c \in R$.
Prove that C is convex if $A \succeq 0$. (10 points)
Ans: You can proof this by the definition of convex sets, or by proving $f(x)=x^{\top} A x+b^{\top}+c$ is a convex function.

Since $\nabla f(x)=\left(A+A^{\top}\right) x, \nabla^{2} f(x)=A+A^{\top}=2 A$ (as A is symmetric).
If $A \succeq 0$, then the hessian $\nabla^{2} f \succeq 0$, which means $f(x)$ is a convex function.
Any level set for a convex function is a convex set. So C is a convex set.
(You can also prove this by examine the intersection of C and arbitrary lines)

Problem 4.2 Prove that the following function is convex. (10 points)
$f(x)=1 /\left(x_{1} x_{2}\right)$, where $x \in R_{++}^{2}$.
Ans: Calculate the correct Hessian and examine all the principle minors to prove the Hessian is PSD. You can use other methods to prove the Hessian is PSD, e.g. factorization; for arbitrary $x, x^{\top} H x \geq 0$.

The Hessian is:

$$
H(f)=\left[\begin{array}{ll}
\frac{2}{x_{1}^{3} x_{2}} & \frac{1}{x_{1}^{2} x_{2}^{2}} \\
\frac{1}{x_{1}^{2} x_{2}^{2}} & \frac{2}{x_{1} x_{2}^{3}}
\end{array}\right]
$$

As $x \in R_{++}^{2}, \frac{2}{x_{1}^{3} x_{2}}>0, \frac{2}{x_{1} x_{2}^{3}}>0$, the determinate $\frac{2}{x_{1}^{3} x_{2} \frac{2}{x_{1}^{3} x_{2}}-\frac{1}{x_{1}^{2} x_{2}^{2}} \frac{1}{x_{1}^{2} x_{2}^{2}}>0 \text {. So the Hessian is PSD, the }}$ function is a convex function.

