CSE203B Convex Optimization Midterm Examination, 2/18/2020 Name

1 True or False

Circle your choice of true or false. Use a short sentence to explain your choice. (20 points)

 The union of two convex sets is convex. True False False. Union operation does not preserve convexity.

- 2. Given two convex sets S_1 and S_2 in the same domain, then set $S_3 = \{x | x \in S_1, x \notin S_2\}$ is convex. True False False. Similar reason as (1).
- 3. Given two convex sets $S_1, S_2 \subset \mathbb{R}^n$, then set $S_3 = \{x_1 x_2 | x_1 \in S_1, x_2 \in S_2\}$ is also convex. True False True. The sum of two convex sets is still convex.
- 4. Function f(x) = −xlogx, x ∈ R₊₊ is a convex function True False False. Concave.
- 5. The conjugate function f*(y) is convex even if function f(x) is not convex.
 True False
 True. It is the pointwise maximum of a family of convex functions of y.
- 6. Function f(x) = log∑_{i=1:n} e^{a_i×x_i}, where a_i and x_i ∈ R for i = 1,...,n, is convex. True False True. Refer to homework 2.
- 7. The equation x₁³x₂⁻¹ + x₃²x₄⁵ = 0 for x ∈ R₊⁴ can be converted into a linear equality constraint using the standard geometric programming formulation. True False False. Not linear.
- 8. In geometric programming, a posynomial function f(x) may not be convex, but can be converted into convex form.
 True False
 True. See geometric programming procedure in the textbook.
- 9. In second order cone programming, the set {x|||Ax+b||₂ ≤ c^Tx+d}, where A ∈ R^{m×n}, x, b, c ∈ Rⁿ and d ∈ R, is convex.
 True False
 True/False. The second order norm is a convex set./There are typos in dimensions.
- 10. The inequality sup_{z∈Z}inf_{w∈W}f(w,z) ≤ inf_{w∈W}sup_{z∈Z}f(w,z) is true even when function f(w,z) is not convex.
 True False

True. It is the statement of max-min property.

2 Theorems and Proofs

Problem 2.1 Prove the following optimality criterion for a convex optimization problem. Suppose that the problem is convex and the objective function $f_0(x)$ is differentialble, prove that \bar{x} is optimal if and only if \bar{x} is feasible and $\nabla f_0(\bar{x})^T (y - \bar{x}) \ge 0$ for all feasible y. (10 points)

Given $f_0(x)$ is convex and differentiable, show that \bar{x} is optimal $\iff \bar{x}$ is feasible and $\nabla f_o(\bar{x})^T (y - \bar{x}) \ge 0$ for all feasible y.

 \Leftarrow : Since f_o is convex over x and differentiable, the first order condition holds. Given $\nabla f_o(\bar{x})^T (y - \bar{x}) \ge 0$, we have $f_o(y) - f_o(x)$ for all feasible y, which shows that \bar{x} is optimal.

⇒: Suppose $\nabla f_o(\bar{x})^T(y-\bar{x}) < 0$ for all y, and let $z = \lambda y + (1-\lambda)\bar{x}$, then following the first order condition, we have $f_o(z) = f_o(x) + \nabla f_o(\bar{x})^T(z-\bar{x})$. since $\nabla f_o(\bar{x})^T(z-\bar{x}) < 0$, we arrive at $f_o(z) < f_o(x)$, which contradicts to the statement that \bar{x} is optimal. Therefore, we show that given \bar{x} is optimal, $\nabla f_o(\bar{x})^T(y-\bar{x}) \ge 0$ for all y.

Problem 2.2 Prove that the Lagrange dual function is concave even if the primal problem is not convex. (10 points)

$$g(\lambda, \mathbf{v}) = inf_{x \in D}L(x, \lambda, \mathbf{v})$$

= $inf_{x \in D}(f_o(x) + \sum_{i=1}^m \lambda_i f_i(x) + \sum_{i=1}^p \mathbf{v}_i h_i(x))$ (1)

Since the dual function is the pointwise infimum of a family of affine functions of (λ, ν) , it is concave even when the primal problem is not convex.

3 Case Studies

Problem 3.1 Dual Cone: Given a cone $K = \{\theta_1 u_1 + \theta_2 u_2 \mid u_1 = [2, -1, 3]^T, u_2 = [-2, 1, 0]^T, \theta_1 \ge 0, \theta_2 \ge 0\}$, find the dual cone of *K*. (15 points)

Ans: The cone can be expressed as

$$K = \{A\theta \mid \theta \succeq 0\}, \quad A = [u_1, u_2]$$

According to the definition of dual cone, we have

$$K^* = \{x \mid A^T x \succeq 0\} = \{x \mid \begin{bmatrix} 2 & -1 & 3 \\ -2 & 1 & 0 \end{bmatrix} x \succeq 0\}$$

For the explicit expression, you need to find a basis for the dual cone. Notice that $A^T x \succeq 0$ expresses the intersection of two halfspaces $u_1^T x \ge 0$ and $u_2^T x \ge 0$, as shown in the following figure.

Figure 1: The dual cone is expressed as the intersection of two halfspaces $u_1^T x \ge 0$ and $u_2^T x \ge 0$. To explicitly express the dual cone, we need four vectors. For example, we can choose

$$K^* = \{\theta_1 u_1 + \theta_2 u_2 + \theta_3 u_3 + \theta_4 u_4 \mid u_1 = \begin{bmatrix} 0\\0\\1 \end{bmatrix}, u_2 = \begin{bmatrix} -2\\1\\5/3 \end{bmatrix}, u_3 = \begin{bmatrix} 1\\2\\0 \end{bmatrix}, u_4 = \begin{bmatrix} -1\\-2\\0 \end{bmatrix}, \theta_i \ge 0 \text{ for } i = 1, \dots, 4\}.$$

Problem 3.2 Conjugate Function: Given a function $f(x) = x_1 + 2x_2 + 3x_3^2$, $x \in \mathbb{R}^3$, derive the conjugate function $f^*(y), y \in \mathbb{R}^3$. (15 points)

Ans: According to the definition, the conjugate function is expressed as

$$f^*(y) = \sup_{x \in \text{dom } f} (y^T x - f(x)).$$

We have the gradient of function

$$\nabla_x(y^T x - f(x)) = y - \begin{bmatrix} 1\\ 2\\ 6x_3 \end{bmatrix}.$$

If $y_1 \neq 1$ or $y_2 \neq 2$, the function is unbounded. Therefore, we have the domain $y_1 = 1$ and $y_2 = 2$. When $y_3 = 6x_3$ the supremum is achieved.

.

$$f^*(y) = \begin{cases} \frac{y_3^2}{12}, \ y_1 = 1, \ y_2 = 2\\ \infty, \ otherwise \end{cases}$$

Problem 3.3 Primal Dual Formulation: Given a linear programming problem, minimize $f_0(x) = c^T x$ subject to $Ax \le b$, and Px = q, where $x \in R^n_+$ (i.e. $x \succeq 0$). Derive the dual problem. (10 points)

The Lagrangian:

$$L(x,\lambda,\mathbf{v}) = c^T x + \lambda^T (Ax - b) + \mathbf{v}^T (Px - q) + \lambda_2^T (-x)$$
$$= (c^T + \lambda^T A + \mathbf{v}^T P - \lambda_2^T) x - \lambda^T b - \mathbf{v}^T q$$

The dual function:

$$g(\lambda, \mathbf{v}) = \inf_{x} L(x, \lambda, \mathbf{v})$$
$$g(\lambda, \mathbf{v}) = \begin{cases} -\lambda^{T} b - \mathbf{v}^{T} q & c + A^{T} \lambda + P^{T} \mathbf{v} - \lambda_{2} = 0\\ -\infty & Otherwise \end{cases}$$

As $\lambda_2 \succeq 0$, $c + A^T \lambda + P^T \nu - \lambda_2 = 0$ is equivalent to $c + A^T \lambda + P^T \nu \succeq 0$

So the dual problem is:

$$\max - \lambda^T b - \nu^T q$$

s.t. $c + A^T \lambda + P^T \nu \succeq 0$
 $\lambda \succeq 0$

4 Problems from Exercises

Problem 4.1 Let $C \subset \mathbb{R}^n$ be the solution set of a quadratic inequality, $C = \{x \in \mathbb{R}^n | x^T A x + b^T x + c \leq 0\}$, with $A \in S^n, b \in \mathbb{R}^n$, and $c \in \mathbb{R}$.

Prove that *C* is convex if $A \succeq 0$. (10 points)

Ans: You can proof this by the definition of convex sets, or by proving $f(x) = x^{\top}Ax + b^{\top} + c$ is a convex function.

Since $\nabla f(x) = (A + A^{\top})x$, $\nabla^2 f(x) = A + A^{\top} = 2A$ (as A is symmetric).

If $A \succeq 0$, then the hessian $\nabla^2 f \succeq 0$, which means f(x) is a convex function.

Any level set for a convex function is a convex set. So C is a convex set.

(You can also prove this by examine the intersection of C and arbitrary lines)

Problem 4.2 Prove that the following function is convex. (10 points)

 $f(x) = 1/(x_1x_2)$, where $x \in R^2_{++}$.

Ans: Calculate the correct Hessian and examine all the principle minors to prove the Hessian is PSD. You can use other methods to prove the Hessian is PSD, e.g. factorization; for arbitrary $x, x^{\top}Hx \ge 0$.

The Hessian is:

$$H(f) = \begin{bmatrix} \frac{2}{x_1^3 x_2} & \frac{1}{x_1^2 x_2^2} \\ \frac{1}{x_1^2 x_2^2} & \frac{2}{x_1 x_2^3} \end{bmatrix}$$

As $x \in R_{++}^2$, $\frac{2}{x_1^3 x_2} > 0$, $\frac{2}{x_1 x_2^3} > 0$, the determinate $\frac{2}{x_1^3 x_2} \frac{2}{x_1^3 x_2} - \frac{1}{x_1^2 x_2^2} \frac{1}{x_1^2 x_2^2} > 0$. So the Hessian is PSD, the function is a convex function.