
CSE203B Convex Optimization Midterm Examination, 2/18/2020 Name

1 True or False

Circle your choice of true or false. Use a short sentence to explain your choice. (20 points)

1. The union of two convex sets is convex.
True False
False. Union operation does not preserve convexity.

2. Given two convex sets S1 and S2 in the same domain, then set S3 = {x|x ∈ S1,x /∈ S2} is convex.
True False
False. Similar reason as (1).

3. Given two convex sets S1,S2 ⊂ Rn, then set S3 = {x1− x2| x1 ∈ S1, x2 ∈ S2} is also convex.
True False
True. The sum of two convex sets is still convex.

4. Function f (x) =−xlogx, x ∈ R++ is a convex function
True False
False. Concave.

5. The conjugate function f ∗(y) is convex even if function f (x) is not convex.
True False
True. It is the pointwise maximum of a family of convex functions of y.

6. Function f (x) = log∑i=1:n eai×xi , where ai and xi ∈ R for i = 1, ...,n, is convex.
True False
True. Refer to homework 2.

7. The equation x3
1x−1

2 + x2
3x5

4 = 0 for x ∈ R4
+ can be converted into a linear equality constraint using the

standard geometric programming formulation.
True False
False. Not linear.

8. In geometric programming, a posynomial function f (x) may not be convex, but can be converted into
convex form.
True False
True. See geometric programming procedure in the textbook.

9. In second order cone programming, the set {x|||Ax+b||2 ≤ cT x+d}, where A ∈ Rm×n, x,b,c ∈ Rn and
d ∈ R, is convex.
True False
True/False. The second order norm is a convex set./There are typos in dimensions.

10. The inequality supz∈Zin fw∈W f (w,z) ≤ in fw∈W supz∈Z f (w,z) is true even when function f (w,z) is not
convex.
True False
True. It is the statement of max-min property.
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2 Theorems and Proofs

Problem 2.1 Prove the following optimality criterion for a convex optimization problem. Suppose that the
problem is convex and the objective function f0(x) is differentialble, prove that x̄ is optimal if and only if x̄
is feasible and ∇ f0(x̄)T (y− x̄)≥ 0 for all feasible y. (10 points)

Given f0(x) is convex and differentiable, show that x̄ is optimal ⇐⇒ x̄ is feasible and5 fo(x̄)T (y− x̄)≥ 0
for all feasible y.
⇐: Since fo is convex over x and differentiable, the first order condition holds. Given5 fo(x̄)T (y− x̄)≥

0, we have fo(y)− fo(x) for all feasible y, which shows that x̄ is optimal.

⇒: Suppose 5 fo(x̄)T (y− x̄) < 0 for all y, and let z = λy + (1− λ)x̄, then following the first order
condition, we have fo(z) = fo(x)+5 fo(x̄)T (z− x̄). since 5 fo(x̄)T (z− x̄) < 0, we arrive at fo(z) < fo(x),
which contradicts to the statement that x̄ is optimal. Therefore, we show that given x̄ is optimal,5 fo(x̄)T (y−
x̄)≥ 0 for all y.

Problem 2.2 Prove that the Lagrange dual function is concave even if the primal problem is not convex. (10
points)

g(λ,ν) = in fx∈DL(x,λ,ν)

= in fx∈D( fo(x)+
m

∑
i=1

λi fi(x)+
p

∑
i=1

νihi(x)) (1)

Since the dual function is the pointwise infimum of a family of affine functions of (λ,ν), it is concave
even when the primal problem is not convex.
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3 Case Studies

Problem 3.1 Dual Cone: Given a cone K = {θ1u1+θ2u2 | u1 = [2,−1,3]T , u2 = [−2,1,0]T , θ1≥ 0,θ2≥ 0},
find the dual cone of K. (15 points)

Ans: The cone can be expressed as

K = {Aθ | θ� 0}, A = [u1,u2]

According to the definition of dual cone, we have

K∗ = {x | AT x� 0}= {x |
[

2 −1 3
−2 1 0

]
x� 0}

For the explicit expression, you need to find a basis for the dual cone. Notice that AT x� 0 expresses the
intersection of two halfspaces uT

1 x≥ 0 and uT
2 x≥ 0, as shown in the following figure.
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Figure 1: The dual cone is expressed as the intersection of two halfspaces uT
1 x≥ 0 and uT

2 x≥ 0.
To explicitly express the dual cone, we need four vectors. For example, we can choose

K∗ = {θ1u1 +θ2u2 +θ3u3 +θ4u4 | u1 =

0
0
1

 , u2 =

−2
1

5/3

 , u3 =

1
2
0

 , u4 =

−1
−2
0

 , θi ≥ 0 for i = 1, . . . ,4}.
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Problem 3.2 Conjugate Function: Given a function f (x) = x1 + 2x2 + 3x2
3, x ∈ R3, derive the conjugate

function f ∗(y),y ∈ R3. (15 points)

Ans: According to the definition, the conjugate function is expressed as

f ∗(y) = sup
x∈dom f

(yT x− f (x)).

We have the gradient of function

∇x(yT x− f (x)) = y−

 1
2

6x3

 .
If y1 6= 1 or y2 6= 2, the function is unbounded. Therefore, we have the domain y1 = 1 and y2 = 2. When

y3 = 6x3 the supremum is achieved.

f ∗(y) =

{
y2

3
12 , y1 = 1, y2 = 2
∞, otherwise

.
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Problem 3.3 Primal Dual Formulation: Given a linear programming problem,
minimize f0(x) = cT x
subject to Ax≤ b, and Px = q, where x ∈ Rn

+ (i.e. x� 0).
Derive the dual problem. (10 points)

The Lagrangian:

L(x,λ,ν) = cT x+λ
T (Ax−b)+ν

T (Px−q)+λ
T
2 (−x)

= (cT +λ
T A+ν

T P−λ
T
2 )x−λ

T b−ν
T q

The dual function:

g(λ,ν) = in fx L(x,λ,ν)

g(λ,ν) =
{
−λT b−νT q c+AT λ+PT ν−λ2 = 0

−∞ Otherwise

As λ2 � 0, c+AT λ+PT ν−λ2 = 0 is equivalent to c+AT λ+PT ν� 0

So the dual problem is:

max−λ
T b−ν

T q

s.t. c+AT
λ+PT

ν� 0

λ� 0
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4 Problems from Exercises

Problem 4.1 Let C⊂ Rn be the solution set of a quadratic inequality, C = {x ∈ Rn|xT Ax+bT x+c≤ 0}, with
A ∈ Sn,b ∈ Rn, and c ∈ R.
Prove that C is convex if A� 0. (10 points)

Ans: You can proof this by the definition of convex sets, or by proving f (x) = x>Ax+b>+c is a convex
function.

Since ∇ f (x) = (A+A>)x, ∇2 f (x) = A+A> = 2A (as A is symmetric).
If A� 0, then the hessian ∇2 f � 0, which means f (x) is a convex function.
Any level set for a convex function is a convex set. So C is a convex set.
(You can also prove this by examine the intersection of C and arbitrary lines)

Problem 4.2 Prove that the following function is convex. (10 points)
f (x) = 1/(x1x2), where x ∈ R2

++.
Ans: Calculate the correct Hessian and examine all the principle minors to prove the Hessian is PSD.

You can use other methods to prove the Hessian is PSD, e.g. factorization; for arbitrary x, x>Hx≥ 0.
The Hessian is:

H( f ) =

[ 2
x3

1x2

1
x2

1x2
2

1
x2

1x2
2

2
x1x3

2

]
As x ∈ R2

++, 2
x3

1x2
> 0, 2

x1x3
2
> 0, the determinate 2

x3
1x2

2
x3

1x2
− 1

x2
1x2

2

1
x2

1x2
2
> 0. So the Hessian is PSD, the

function is a convex function.
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