CSE203B Convex Optimization Midterm Examination, 2/18/2020 Name

1 True or False

Circle your choice of true or false. Use a short sentence to explain your choice. (20 points)

- 1. The union of two convex sets is convex. True False
- 2. Given two convex sets S_1 and S_2 in the same domain, then set $S_3 = \{x | x \in S_1, x \notin S_2\}$ is convex. True False
- 3. Given two convex sets $S_1, S_2 \subset \mathbb{R}^n$, then set $S_3 = \{x_1 x_2 | x_1 \in S_1, x_2 \in S_2\}$ is also convex. True False
- 4. Function f(x) = -xlogx, $x \in R_{++}$ is a convex function True False
- 5. The conjugate function $f^*(y)$ is convex even if function f(x) is not convex. True False
- 6. Function $f(x) = log \sum_{i=1:n} e^{a_i \times x_i}$, where a_i and $x_i \in R$ for i = 1, ..., n, is convex. True False
- 7. The equation x₁³x₂⁻¹ + x₃²x₄⁵ = 0 for x ∈ R₊⁴ can be converted into a linear equality constraint using the standard geometric programming formulation. True False
- 8. In geometric programming, a posynomial function f(x) may not be convex, but can be converted into convex form.
 True False
- 9. In second order cone programming, the set $\{x | | |Ax + b||_2 \le c^T x + d\}$, where $A \in \mathbb{R}^{mn}$, $x, b, c \in \mathbb{R}^n$ and $d \in \mathbb{R}$, is convex. True False
- 10. The inequality sup_{z∈Z}inf_{w∈W}f(w,z) ≤ inf_{w∈W}sup_{z∈Z}f(w,z) is true even when function f(w,z) is not convex.
 True False

2 Theorems and Proofs

Problem 2.1 Prove the following optimality criterion for a convex optimization problem. Suppose that the problem is convex and the objective function $f_0(x)$ is differentialble, prove that \bar{x} is optimal if and only if \bar{x} is feasible and $\nabla f_0(\bar{x})^T (y - \bar{x}) \ge 0$ for all feasible y. (10 points)

Problem 2.2 Prove that the Lagrange dual function is concave even if the primal problem is not convex. (10 points)

3 Case Studies

Problem 3.1 Dual Cone: Given a cone $K = \{\theta_1 u_1 + \theta_2 u_2 \mid u_1 = [2, -1, 3]^T, u_2 = [-2, 1, 0]^T, \theta_1 \ge 0, \theta_2 \ge 0\}$, find the dual cone of *K*. (15 points)

Problem 3.2 Conjugate Function: Given a function $f(x) = x_1 + 2x_2 + 3x_3^2$, $x \in \mathbb{R}^3$, derive the conjugate function $f^*(y), y \in \mathbb{R}^3$. (15 points)

Problem 3.3 Primal Dual Formulation: Given a linear programming problem, minimize $f_0(x) = c^T x$ subject to $Ax \le b$, and Px = q, where $x \in R^n_+$ (i.e. $x \succeq 0$). Derive the dual problem. (10 points)

4 Problems from Exercises

Problem 4.1 Let $C \subset \mathbb{R}^n$ be the solution set of a quadratic inequality, $C = \{x \in \mathbb{R}^n | x^T A x + b^T x + c \leq 0\}$, with $A \in S^n, b \in \mathbb{R}^n$, and $c \in \mathbb{R}$. Prove that *C* is convex if $A \succeq 0$. (10 points)

Problem 4.2 Prove that the following function is convex. (10 points) $f(x) = 1/(x_1x_2)$, where $x \in \mathbb{R}^2_{++}$.