CSE203B Convex Optimization Midterm Examination, 2/18/2020 Name \qquad

1 True or False

Circle your choice of true or false. Use a short sentence to explain your choice. (20 points)

1. The union of two convex sets is convex.

True False
2. Given two convex sets S_{1} and S_{2} in the same domain, then set $S_{3}=\left\{x \mid x \in S_{1}, x \notin S_{2}\right\}$ is convex.

True False
3. Given two convex sets $S_{1}, S_{2} \subset R^{n}$, then set $S_{3}=\left\{x_{1}-x_{2} \mid x_{1} \in S_{1}, x_{2} \in S_{2}\right\}$ is also convex.

True False
4. Function $f(x)=-x \log x, x \in R_{++}$is a convex function

True False
5. The conjugate function $f^{*}(y)$ is convex even if function $f(x)$ is not convex.

True False
6. Function $f(x)=\log \sum_{i=1: n} e^{a_{i} \times x_{i}}$, where a_{i} and $x_{i} \in R$ for $i=1, \ldots, n$, is convex.

True False
7. The equation $x_{1}^{3} x_{2}^{-1}+x_{3}^{2} x_{4}^{5}=0$ for $x \in R_{+}^{4}$ can be converted into a linear equality constraint using the standard geometric programming formulation.
True False
8. In geometric programming, a posynomial function $f(x)$ may not be convex, but can be converted into convex form.
True False
9. In second order cone programming, the set $\left\{x \mid\|A x+b\|_{2} \leq c^{T} x+d\right\}$, where $A \in R^{m n}, x, b, c \in R^{n}$ and $d \in R$, is convex.
True False
 convex.
True False

2 Theorems and Proofs

Problem 2.1 Prove the following optimality criterion for a convex optimization problem. Suppose that the problem is convex and the objective function $f_{0}(x)$ is differentialble, prove that \bar{x} is optimal if and only if \bar{x} is feasible and $\nabla f_{0}(\bar{x})^{T}(y-\bar{x}) \geq 0$ for all feasible y. (10 points)

Problem 2.2 Prove that the Lagrange dual function is concave even if the primal problem is not convex. (10 points)

3 Case Studies

Problem 3.1 Dual Cone: Given a cone $K=\left\{\theta_{1} u_{1}+\theta_{2} u_{2} \mid u_{1}=[2,-1,3]^{T}, u_{2}=[-2,1,0]^{T}, \theta_{1} \geq 0, \theta_{2} \geq 0\right\}$, find the dual cone of K. (15 points)

Problem 3.2 Conjugate Function: Given a function $f(x)=x_{1}+2 x_{2}+3 x_{3}^{2}, x \in R^{3}$, derive the conjugate function $f^{*}(y), y \in R^{3}$. (15 points)

Problem 3.3 Primal Dual Formulation: Given a linear programming problem,
$\operatorname{minimize} f_{0}(x)=c^{T} x$
subject to $A x \leq b$, and $P x=q$, where $x \in R_{+}^{n}$ (i.e. $x \succeq 0$).
Derive the dual problem. (10 points)

4 Problems from Exercises

Problem 4.1 Let $C \subset R^{n}$ be the solution set of a quadratic inequality, $C=\left\{x \in R^{n} \mid x^{T} A x+b^{T} x+c \leq 0\right\}$, with $A \in S^{n}, b \in R^{n}$, and $c \in R$.
Prove that C is convex if $A \succeq 0$. (10 points)

Problem 4.2 Prove that the following function is convex. (10 points)
$f(x)=1 /\left(x_{1} x_{2}\right)$, where $x \in R_{++}^{2}$.

