
CSE203B Convex Optimization Midterm Examination, 2/14, Spring 2019 Name

1 True or False

Circle your choice of true or false. Use a short sentence to explain your choice. (20 points)
Rubrics

• 2 pnts for each correct answer.

• -1 pnt for wrong answer with reasonable explanation.

• 0 pnt for wrong answer without reasonable explanation.

1. The intersection of two convex sets is convex.
True False

True. Intersection preserves the convexity.

2. Given two convex sets A1,A2 ⊂ Rn, the set A3 = {[xT
1 ,x

T
2 ]

T | x1 ∈ A1, x2 ∈ A2} in R2n is also convex.
True False

True. We can prove the convexity by definition.

3. Given two convex sets A1,A2 ⊂ Rn, the set A3 = {x1 + x2| x1 ∈ A1, x2 ∈ A2} is also convex.
True False

True. We can prove the convexity by definition.

4. Given two convex sets A1,A2 ⊂ R, the set A3 = {x1× x2| x1 ∈ A1, x2 ∈ A2} is also convex.
True False

True. The sets are intervals in R.

5. Function f (x) =−logx, x ∈ R++ is a convex function
True False

True. According to second-order condition the function is convex.

6. Function g(y) = f (x|x = Ay) where matrix A ∈ Rmn is used for an affine transformation from y ∈ Rn

to x ∈ Rm, is convex if f (x) is convex.
True False

True. The convexity is preserved with affine operations.

7. Function g(y) = minx f (x,y) is convex if f (x,y) is differentiable.
True False

False. See Chap 3.2.5.
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8. Function g(y) = minx f (x,y) is convex if function h(x) = maxy f (x,y) is a convex function of input x.
True False

False. See Chap 3.2.5.

9. Minimization of function f (x) = x3
1x2− x2

3x5
4 for x ∈ R4

+ is a geometric programming problem.
True False

False. The coefficient should be positive in GP.

10. Given a convex function f (x) for x ∈ Rn, the condition ∇ f (x̄) = 0 implies that x̄ is a solution either
maximizing or minimizing the function.
True False

False. For convex function only minimizing.
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2 Theorems and Proofs

Problem 2.1 State and prove the convexity of pointwise maximization of a set of convex functions. (10
points)
Rubrics

• -2 pnts for each incorrect/missing statement.

• -1 pnt for minor mistake.

Either using the definition or properties of epigraph to prove the convexity.

Problem 2.2 Show that the dual function yields lower bounds on the optimal value p∗ of the primal problem,
i.e. for any Lagrange multipliers λ≥ 0 and any ν, we have the dual function, g(λ,ν)≤ p∗. (10 points)
Rubrics

• Points deducted if the statement is incorrect or incomplete.

Refer to Chap 5.1.3 or use saddle-point property.
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3 Case Studies

Problem 3.1 Dual Cone: Given a cone K = {θ1u1+θ2u2 | u1 = [2,−1]T , u2 = [1,0]T , θ1 ≥ 0,θ2 ≥ 0}, find
the dual cone of K. (15 points)
Rubrics

• -5 pnts for partially correct answer with proper process.

Given a cone K = {AT x|x≥ 0}, its dual cone K∗ = {x|Ax≥ 0}.

The implicit format for the dual cone is K∗ = {x|
(

2 −1
1 0

)
x≥ 0}.

The explicit format K∗ = {x1u1 + x2u2 | u1 = [1,2]T , u2 = [0,−1]T ,x≥ 0}.

Problem 3.2 Conjugate Function: Given a function f (x) = 2x2
1 + 3(x2− 4)2, x ∈ R2, find the conjugate

function f ∗(y),y ∈ R2. (15 points)
Rubrics

• -5 pnts for partially correct answer with proper process.

• -2 pnts for minor mistake.

The conjugate function f ∗(y) = 1
8 y2

1 +
1

12 y2
2 +4y2 for y ∈ R2.
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Problem 3.3 Primal Dual Formulation: Given a linear programming problem,
minimize f0(x) = cT x
subject to Ax≤ b, and Px = q, where x ∈ Rn.

Derive the dual problem formulation. (10 points)
Rubrics

• -5 pnts for partially correct answer with proper process.

• -2 pnts for missing constraint in the dual problem.

• -1 pnt for minor mistake.

The Lagrangian with λ,ν ∈ Rn and λ≥ 0

L(x,λ,ν) = cT x+λ
T (Ax−b)+ν

T (Px−q)

= −bT
λ−qT

ν+(c+AT
λ+PT

ν)T x

The dual function is

g(λ,ν) = infx L(x,λ,ν) =−bT
λ−qT

ν+ infx (c+AT
λ+PT

ν)T x

which is bounded below only when c+AT λ+PT ν = 0. We have

g(λ,ν) =

{
−bT λ−qT ν if c+AT λ+PT ν = 0, λ≥ 0
−∞ otherwise

The dual problem is formulated as

maximize −bT λ−qT ν

subject to c+AT λ+PT ν = 0

λ≥ 0
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4 Problems from Exercises

Problem 4.1 Prove the inequality D(p,q) = ∑
n
i=1 pilog(pi/qi)− pi +qi ≥ 0 for all p,q ∈ Rn

++. (10 points)
Rubrics

• -2 pnts for each incomplete/incorrect statement.

See exercise 3.13.
Some common mistakes: if a function f (x,y) is convex of x and convex of y individually, we could not
derive that f (x,y) is convex of (x,y). Consider the second-order condition, the Hessian is not guaranteed to
be positive semi-definite if the diagonal terms are PSD. Off diagonal terms could cause negative eigenvalues
of the matrix. Proof is required to show whether ∇2 f (x,y) is PSD or not.

Problem 4.2 Consider a convex problem with no equality constraints,
minimize f0(x)
subject to fi(x)≤ 0, i = 1, ...,m.

Assume that vector x∗ ∈ Rn and Lagrange multiplier λ∗ satisfy the KKT conditions. Use KKT conditions to
prove the following.

∇ f0(x∗)T (x− x∗)≥ 0 for all feasible x. (10 points)
Rubrics

• -2 pnts for each incomplete/incorrect statement.

• -3 pnts for using ”KKT conditions⇔ primal and dual optimal solution” directly.

See exercise 5.31.
The objective is to show that KKT conditions could be interpreted as ∇ f0(x∗)T (x− x∗) ≥ 0, which is the
optimal criterion for convex problem, instead of deriving from the conclusion that KKT conditions are
sufficient for the primal and dual optimal.
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