CSE203B Convex Optimization Midterm Examination, 2/14, Spring 2019 Name

1 True or False

Circle your choice of true or false. Use a short sentence to explain your choice. (20 points)
Rubrics

e 2 pnts for each correct answer.
e -1 pnt for wrong answer with reasonable explanation.

e ( pnt for wrong answer without reasonable explanation.

1. The intersection of two convex sets is convex.
True False
True. Intersection preserves the convexity.
2. Given two convex sets Aj,Ay C R, the set A3 = {[x],.x]]7| x; € A1, x, € A2} in R*" is also convex.
True False
True. We can prove the convexity by definition.
3. Given two convex sets Aj,A, C R", the set A3 = {x] +x2| x; €Ay, xo € Ay} is also convex.
True False
True. We can prove the convexity by definition.
4. Given two convex sets Aj,Ay C R, the set A3 = {x; X x2| x; €A, x» € Ay} is also convex.
True False
True. The sets are intervals in R.
5. Function f(x) = —logx, x € R is a convex function
True False
True. According to second-order condition the function is convex.

6. Function g(y) = f(x|x = Ay) where matrix A € R™" is used for an affine transformation from y € R"
to x € R™, is convex if f(x) is convex.
True False
True. The convexity is preserved with affine operations.

7. Function g(y) = min, f(x,y) is convex if f(x,y) is differentiable.

True False

False. See Chap 3.2.5.



8. Function g(y) = min, f(x,y) is convex if function 4(x) = max, f(x,y) is a convex function of input x.
True False

False. See Chap 3.2.5.
9. Minimization of function f(x) = x?xz — x%xi forx € Ri is a geometric programming problem.
True False

False. The coefficient should be positive in GP.

10. Given a convex function f(x) for x € R", the condition Vf(X) = 0 implies that X is a solution either
maximizing or minimizing the function.
True False

False. For convex function only minimizing.



2 Theorems and Proofs

Problem 2.1 State and prove the convexity of pointwise maximization of a set of convex functions. (10
points)
Rubrics

e -2 pnts for each incorrect/missing statement.
e -1 pnt for minor mistake.

Either using the definition or properties of epigraph to prove the convexity.

Problem 2.2 Show that the dual function yields lower bounds on the optimal value p* of the primal problem,
i.e. for any Lagrange multipliers A > 0 and any v, we have the dual function, g(A,v) < p*. (10 points)
Rubrics

e Points deducted if the statement is incorrect or incomplete.

Refer to Chap 5.1.3 or use saddle-point property.



3 Case Studies

Problem 3.1 Dual Cone: Given a cone K = {8ju; + 0y | u; = [2,—1]7, u; =[1,0]", 6; > 0,0, > 0}, find
the dual cone of K. (15 points)
Rubrics

e -5 pnts for partially correct answer with proper process.

Given a cone K = {ATx|x > 0}, its dual cone K* = {x|Ax > 0}.
The implicit format for the dual cone is K* = {x| <? _01> x>0}.

The explicit format K* = {xju; +xup | uy = [1,2]7, up = [0,—1]7,x > 0}.

Problem 3.2 Conjugate Function: Given a function f(x) = 2x{ +3(x2 —4)?, x € R, find the conjugate
function f*(y),y € R?. (15 points)
Rubrics

e -5 pnts for partially correct answer with proper process.
e -2 pnts for minor mistake.

The conjugate function f*(y) = %y% + 11—2)/% +4y, for y € R2.



Problem 3.3 Primal Dual Formulation: Given a linear programming problem,

minimize fo(x) = ¢! x

subject to Ax < b, and Px = g, where x € R".
Derive the dual problem formulation. (10 points)
Rubrics

e -5 pnts for partially correct answer with proper process.
e -2 pnts for missing constraint in the dual problem.
e -1 pnt for minor mistake.

The Lagrangian with A,v € R" and A > 0

L(x,A,v) = c"x+A(Ax—b)+Vv' (Px—q)
= b'A—q"V+ (c+ATA+PTV)Tx

The dual function is
g(A,v) =inf, L(x,A,v) = —=b' A — ¢’ v +inf, (c+ATA+PTv)Tx
which is bounded below only when ¢ +A”A + PTv = 0. We have

—b"AN—qg"v ifc+ATA+PTV=0,1>0
g\ v) = {

—oo otherwise

The dual problem is formulated as

maximize —b"h—qg'v
subjectto  c+ATA+PTv=0
A>0



4 Problems from Exercises

Problem 4.1 Prove the inequality D(p,q) = Y.i'| pilog(pi/qi) — pi+¢i > 0 for all p,q € R"_, . (10 points)
Rubrics

e -2 pnts for each incomplete/incorrect statement.

See exercise 3.13.

Some common mistakes: if a function f(x,y) is convex of x and convex of y individually, we could not
derive that f(x,y) is convex of (x,y). Consider the second-order condition, the Hessian is not guaranteed to
be positive semi-definite if the diagonal terms are PSD. Off diagonal terms could cause negative eigenvalues
of the matrix. Proof is required to show whether V2 f(x,y) is PSD or not.

Problem 4.2 Consider a convex problem with no equality constraints,
minimize fo(x)
subject to fi(x) <0,i=1,...,m.
Assume that vector x* € R" and Lagrange multiplier A* satisfy the KKT conditions. Use KKT conditions to
prove the following.
V fo(x*)T (x —x*) > 0 for all feasible x. (10 points)
Rubrics

e -2 pnts for each incomplete/incorrect statement.
e -3 pnts for using "KKT conditions < primal and dual optimal solution” directly.

See exercise 5.31.

The objective is to show that KKT conditions could be interpreted as V fo(x*)7 (x — x*) > 0, which is the
optimal criterion for convex problem, instead of deriving from the conclusion that KKT conditions are
sufficient for the primal and dual optimal.



