1 True or False

Circle your choice of true or false. Use a short sentence to explain your choice. (20 points)

Rubrics

- 2 pnts for each correct answer.
- -1 pnt for wrong answer with reasonable explanation.
- 0 pnt for wrong answer without reasonable explanation.
- 1. The intersection of two convex sets is convex.

True False

True. Intersection preserves the convexity.

2. Given two convex sets $A_1, A_2 \subset \mathbb{R}^n$, the set $A_3 = \{[x_1^T, x_2^T]^T | x_1 \in A_1, x_2 \in A_2\}$ in \mathbb{R}^{2n} is also convex. True False

True. We can prove the convexity by definition.

3. Given two convex sets $A_1, A_2 \subset \mathbb{R}^n$, the set $A_3 = \{x_1 + x_2 | x_1 \in A_1, x_2 \in A_2\}$ is also convex. True False

True. We can prove the convexity by definition.

4. Given two convex sets $A_1, A_2 \subset R$, the set $A_3 = \{x_1 \times x_2 | x_1 \in A_1, x_2 \in A_2\}$ is also convex. True False

True. The sets are intervals in R.

5. Function f(x) = -logx, $x \in R_{++}$ is a convex function True False

True. According to second-order condition the function is convex.

6. Function g(y) = f(x|x = Ay) where matrix $A \in R^{mn}$ is used for an affine transformation from $y \in R^n$ to $x \in R^m$, is convex if f(x) is convex.

True False

True. The convexity is preserved with affine operations.

7. Function $g(y) = \min_{x} f(x, y)$ is convex if f(x, y) is differentiable. True False

False. See Chap 3.2.5.

8. Function $g(y) = \min_x f(x, y)$ is convex if function $h(x) = \max_y f(x, y)$ is a convex function of input x. True False

False. See Chap 3.2.5.

9. Minimization of function $f(x) = x_1^3 x_2 - x_3^2 x_4^5$ for $x \in \mathbb{R}_+^4$ is a geometric programming problem. True False

False. The coefficient should be positive in GP.

10. Given a convex function f(x) for $x \in \mathbb{R}^n$, the condition $\nabla f(\bar{x}) = 0$ implies that \bar{x} is a solution either maximizing or minimizing the function.

True False

False. For convex function only minimizing.

2 Theorems and Proofs

Problem 2.1 State and prove the convexity of pointwise maximization of a set of convex functions. (10 points)

Rubrics

- -2 pnts for each incorrect/missing statement.
- -1 pnt for minor mistake.

Either using the definition or properties of epigraph to prove the convexity.

Problem 2.2 Show that the dual function yields lower bounds on the optimal value p^* of the primal problem, i.e. for any Lagrange multipliers $\lambda \ge 0$ and any ν , we have the dual function, $g(\lambda, \nu) \le p^*$. (10 points) **Rubrics**

• Points deducted if the statement is incorrect or incomplete.

Refer to Chap 5.1.3 or use saddle-point property.

Case Studies

Problem 3.1 Dual Cone: Given a cone $K = \{\theta_1 u_1 + \theta_2 u_2 \mid u_1 = [2, -1]^T, \ u_2 = [1, 0]^T, \ \theta_1 \ge 0, \theta_2 \ge 0\}$, find the dual cone of K. (15 points)

Rubrics

• -5 pnts for partially correct answer with proper process.

Given a cone $K = \{A^T x | x \ge 0\}$, its dual cone $K^* = \{x | Ax \ge 0\}$.

The implicit format for the dual cone is $K^* = \{x | \begin{pmatrix} 2 & -1 \\ 1 & 0 \end{pmatrix} x \ge 0\}$. The explicit format $K^* = \{x_1u_1 + x_2u_2 \mid u_1 = [1, 2]^T, u_2 = [0, -1]^T, x \ge 0\}$.

Problem 3.2 Conjugate Function: Given a function $f(x) = 2x_1^2 + 3(x_2 - 4)^2$, $x \in \mathbb{R}^2$, find the conjugate function $f^*(y), y \in \mathbb{R}^2$. (15 points)

Rubrics

- -5 pnts for partially correct answer with proper process.
- -2 pnts for minor mistake.

The conjugate function $f^*(y) = \frac{1}{8}y_1^2 + \frac{1}{12}y_2^2 + 4y_2$ for $y \in \mathbb{R}^2$.

Problem 3.3 Primal Dual Formulation: Given a linear programming problem,

minimize
$$f_0(x) = c^T x$$

subject to $Ax \le b$, and $Px = q$, where $x \in R^n$.

Derive the dual problem formulation. (10 points)

Rubrics

- -5 pnts for partially correct answer with proper process.
- -2 pnts for missing constraint in the dual problem.
- -1 pnt for minor mistake.

The Lagrangian with $\lambda, \nu \in \mathbb{R}^n$ and $\lambda \geq 0$

$$L(x,\lambda,\mathbf{v}) = c^T x + \lambda^T (Ax - b) + \mathbf{v}^T (Px - q)$$

= $-b^T \lambda - q^T \mathbf{v} + (c + A^T \lambda + P^T \mathbf{v})^T x$

The dual function is

$$g(\lambda, \mathbf{v}) = \inf_{\mathbf{x}} L(\mathbf{x}, \lambda, \mathbf{v}) = -b^T \lambda - q^T \mathbf{v} + \inf_{\mathbf{x}} (c + A^T \lambda + P^T \mathbf{v})^T \mathbf{x}$$

which is bounded below only when $c + A^T \lambda + P^T v = 0$. We have

$$g(\lambda, \mathbf{v}) = \begin{cases} -b^T \lambda - q^T \mathbf{v} & \text{if } c + A^T \lambda + P^T \mathbf{v} = 0, \ \lambda \ge 0 \\ -\infty & \text{otherwise} \end{cases}$$

The dual problem is formulated as

maximize
$$-b^T \lambda - q^T v$$

subject to $c + A^T \lambda + P^T v = 0$
 $\lambda \ge 0$

4 Problems from Exercises

Problem 4.1 Prove the inequality $D(p,q) = \sum_{i=1}^{n} p_i log(p_i/q_i) - p_i + q_i \ge 0$ for all $p,q \in R_{++}^n$. (10 points) **Rubrics**

• -2 pnts for each incomplete/incorrect statement.

See exercise 3.13.

Some common mistakes: if a function f(x,y) is convex of x and convex of y individually, we could not derive that f(x,y) is convex of (x,y). Consider the second-order condition, the Hessian is not guaranteed to be positive semi-definite if the diagonal terms are PSD. Off diagonal terms could cause negative eigenvalues of the matrix. Proof is required to show whether $\nabla^2 f(x,y)$ is PSD or not.

Problem 4.2 Consider a convex problem with no equality constraints,

minimize $f_0(x)$ subject to $f_i(x) \le 0, i = 1,...,m$.

Assume that vector $x^* \in \mathbb{R}^n$ and Lagrange multiplier λ^* satisfy the KKT conditions. Use KKT conditions to prove the following.

 $\nabla f_0(x^*)^T(x-x^*) \ge 0$ for all feasible x. (10 points)

Rubrics

- -2 pnts for each incomplete/incorrect statement.
- -3 pnts for using "KKT conditions \Leftrightarrow primal and dual optimal solution" directly.

See exercise 5.31.

The objective is to show that KKT conditions could be interpreted as $\nabla f_0(x^*)^T(x-x^*) \ge 0$, which is the optimal criterion for convex problem, instead of deriving from the conclusion that KKT conditions are sufficient for the primal and dual optimal.