CSE291 Convex Optimization: Review for Midterm Examination

1 Theorems and Proofs

We will test theorem statements and proofs. The following is a list of sample items.

Separating hyperplane theorem

First-order condition of convex function

Second-order condition of convex function

Convexity of Pointwise maximization of a set of convex functions

Convexity of minimization of a convex function f(x, y) with respect to a subset of variables y in a convex set C

Concavity of the Lagrange dual function

KKT optimality conditions

Here are a few sample problems.

Problem State and prove the separating hyperplane theorem

Problem Show that conjugate function $f^*(y)$ can be used to identify a supporting hyperplane of the epigraph of the original function f(x).

Problem Show that the dual function yields lower bounds on the optimal value p^* of the primal problem, i.e. for any Lagrange multipliers $\lambda \ge 0$ and any v, we have the dual function,

$$g(\lambda, \mathbf{v}) \le p^*. \tag{1}$$

2 Case Studies

We go through a few cases to clarify the concept.

Problem Supporting Hyperplane: Given a set $\{x \mid x_1^2 + 2x_2^2 \le 9\}$, find a supporting hyperplane at point $[x_1, x_2] = [1, 2]$.

Problem Dual Cone: Given a cone $K = \{\theta_1 u_1 + \theta_2 u_2 \mid u_1 = [1, 1]^T, u_2 = [0, 1]^T, \theta_1 + \theta_2 = 1, \theta_1 \ge 0, \theta_2 \ge 0\}$, find the dual cone of *K*.

Problem Conjugate Function: Given a function $f(x) = x_1x_2, x \in R^2_+$, find the dual function $f(y)^*, y \in R^2$. **Problem** Primal Dual Formulation: Given a linear programming problem,

minimize $f_0(x) = c^T x$

subject to $Ax \le b$, and Cx = d, where $x \in \mathbb{R}^n$.

Derive the dual problem formulation.

3 Problems from Exercises and Other Sources

We may use problems from exercises and other sources. Here are some samples. **Problem** exercise 3.13 **Problem** exercise 4.8