
CSE 203B W21 Midterm 10AM 2/16/2021-10AM 2/18/2021
Submit your solution to gradescope before the due time.

Policy of the Exam: Here is the policy of the exam:
1. This is an open-book take-home exam. Internet search is permitted. How-
ever, you are required to work by yourself. Consultation or discussion with any
other parties is not allowed.
2. You are not required to typeset your solutions. We do expect your writing to
be legible and your final answers clearly indicated. Also, please allow sufficient
time to upload your solutions.
3. You are allowed to check your answers with programs in Matlab, CVX,
Mathematica, Maple, NumPy, etc. Be aware that these programs may not
produce the intermediate steps needed to receive credit.
4. If something is unclear, state the assumptions that seem most natural to you
and proceed under those assumptions. Out of fairness, we will not be answering
questions about the technical content of the exam on Piazza or by email. The
solution will then be graded based on the reasonable assumptions made.

Part I: True or False: Explain your answer with one sentence (36 pts)

Problem 1 (convex set): Set {(x3, y2 − x)|x+ 4y < 3, x, y ∈ R} is convex.
T/F: F. We can check the convexity with a two dimensional plot.

Problem 2 (dual cone): Given cone
K = {θ1u1 + θ2u2|u1 = [2,−1]T , u2 = [1, 0]T , θ1 ≥ 0, θ2 ≥ 0}, its dual cone is
K∗ = {x1u1 + x2u2|u1 = [1, 2]T , u2 = [0,−1]T , x1 ≥ 0, x2 ≥ 0}.
T/F: T. We can verify with a two dimensional plot.

Problem 3 (Convex Function): Given function f(x, y) = xTAx+2xTBy+yTCy,
where matrices A,C ∈ Sn and x, y ∈ Rn, then f(x, y) is concave if and only if

the matrix

[
A B
BT C

]
is negative semidefinite.

T/F: T. We can prove the statement via conversion to matrix formulation.

Problem 4 (Convex Function): Function h(x) =
∑m
i=1 aifi(x) is convex if func-

tion fi(x) is convex and ai ∈ R for every i ∈ {1, ...,m}.
T/F: F. The convexity holds only when ais are positive.

Problem 5 (Convex Function): Function h(x) = f(x) × g(x) is convex if both
functions f(x) and g(x) are convex.
T/F: F. We can show the result with counter examples.

Problem 6 (Quadratic Optimization Problem): A second-order cone program-
ming (SOCP) problem is solved as a typical quadratically constrained quadratic
programming (QCQP) problem.
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T/F: F. The SOCP formulation covers a larger set of problems.

Problem 7 (Geometric Programming): A posynomial function is a convex func-
tion.
T/F: F. A posynomial function can be nonconvex.

Problem 8 (Duality): Given a nonconvex programming problem as a primal
problem, the dual of its dual has the same solution as the primal problem.
T/F: F. The statement requires the convexity of the primal problem and the
Slater condition.

Problem 9 (Duality): Given a function f(x, y), the equality minxmaxyf(x, y) =
maxyminxf(x, y) is always true.
T/F: F. The statement requires the existance of the saddle point.

Part II: Problem Solving: Show your process

Problem 1. Support vector machine (SVM): Given two sets of points C =
{x1, ..., xm} and D = {y1, ..., ym}, where xi, yi ∈ Rn, we find a hyperplane with
vector a ∈ Rn and bias b ∈ R to maximize the following objective function. (20
pts)

maxu, u ∈ R
s.t. aTxi ≤ b− u, aT yi ≥ b+ u, for all i = 1, ...,m

||a||22 ≤ 1

(1) Given the above primal problem, formulate its dual problem.
(2) Create a nontrivial numerical example with n = 2,m = 5. Derive the solu-
tion via the primal formulation.
(3) Derive the solution of (2) via the dual formulation.
(4) Show the classification results of (2) and (3) with a 2-D plot (or plots).

Answer:

L(u, a, b, λ1, λ2, λ3) = −u+ λT1 (Xa− (b− u)1) + λT2 ((b+ u)1− Y a) + λ3(aTa− 1)

= −u(−1 + λT1 1 + λT2 1) + b(−λT1 1 + λT2 1) + (XTλ1 − Y Tλ2)Ta+ λ3a
Ta− λ3

g(λ1, λ2, λ3) = inf
u,a,b

L(u, a, b, λ1, λ2, λ3) unbounded if λT1 1 + λT2 1 6= 1 or λT1 1− λT2 1 6= 0

∇aL = 0 =⇒ a =
1

2λ3
(Y Tλ2 −XTλ1)

=⇒ g(λ1, λ2, λ3) = − 1

4λ3
||XTλ1 − Y Tλ2||22 − λ3 provided the above conditions are met.
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So, the dual problem is

max
λ1,λ2

−||XTλ1 − Y Tλ2||22

s.t. λT1 1 = λT2 1 =
1

2
, λ1, λ2 ≥ 0

Note: I looked primarily for a correct Lagrangian and boundedness conditions.
I also accepted reductions to the standard svm primal/dual problems.

Problem 2. Conjugate Function: Consider the function

f(x) =

{
||x||22, ||x||2 ≤ a,
a(2||x||2 − a), ||x||2 > a,

where variable x ∈ Rn and constant a ∈ R++. Derive the conjugate function
f∗(y), y ∈ Rn. (10 pts)
Answer:

f∗(y) =

{
||y||22/4, if ||y||2 ≤ 2a,

∞, otherwise.

Problem 3. Kullback-Leibler Divergence: Show that KL(p, q) = 0 if and only
if p = q. Here, we define the Kullback-Leibler (KL) divergence as KL(p, q) =∑
i pi log(piqi ), where pi > 0, qi > 0, ∀i ∈ {1, 2, ..., n}, and

∑n
i=1 pi =

∑n
i=1 qi =

1. (10 pts)
Answer:
Either way is correct:
1. Use Jensen’s inequality and state the condition that the equality holds.
2. Show that the function is strictly convex and always larger than zero when
p 6= q. Hence, proof by contradiction, KL(p, q) = 0 if and only if p = q.

Problem 4. Linear Programming Problem: Given the following optimization
problem:

minimize cTx
subject to

||x||p = 1
−x � 0

where variable x ∈ Rn, and constants c ∈ Rn, p ≥ 1, derive an explicit solution.
(10 pts)
Answer:

f∗(x) =



−||c||q, if ci < 0 ∀i;
−||c′||q, if ∃ i, j s.t. ci < 0 and cj ≥ 0,

Replace cj with c′j = 0 if cj ≥ 0 else c′j = cj ∀j
Set c′ be the vector of elements c′j .

cmin, ifci ≥ 0 ∀i, where cmin = mini ci.
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Problem 5. Compressed Sensing: Given the following problem

minimize ||y||22 + α||x||1
subject to

Ax+ y = b

where variables x, y ∈ Rn, matrix A ∈ Rm×n, and constant b ∈ Rn. (14 pts)
(1) Write the dual formulation assuming that xi is positive for all i ∈ {1, ..n}.
(2) Repeat item (1) without the assumption that xi is positive.

Answer:

L(x, y, υ) = ||y||22 + α||x||1 + 〈υ,Ax+ y − b〉 Lagrangian

g(x, y, υ) = inf
x,y
||y||22 + 〈υ, y〉+ α||x||1 + 〈υ,Ax〉 − 〈υ, b〉

= inf
y
||y||22 + 〈υ, y〉+ inf

x
α||x||1 + 〈υ,Ax〉 − 〈υ, b〉

inf
y
||y||22 + 〈υ, y〉 → y = −1

2
υ

inf
x
α||x||1 + 〈υ,Ax〉 = 0 if ||υTA||∞ ≤ α,−∞ o/w

since inf
xi

α|xi|+ 〈υ,Ax〉i = inf
xi

α|xi|+ [υTAx]i coordinate separability of `1 norm

= inf
xi

(α+ sign(xi)(υ
TA)i)|xi|

= 0 if |υTA|i ≤ α, −∞ o/w

So, the dual problem for (2) ((2) generalizes (1)) is

max
υ
−1

4
||υ||22 − υT b

s.t. ||υTA||∞ ≤ α

Note: no positivity constraints on the dual variables are necessary due to the
primal equality constraint. I looked primarily for a correct lagrangian and upper
bound constraints.
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