
CSE 203B Midterm

Part I: True or False: Explain your answer with one sentence (27 pts)

I.1 (convex set): Set {(x2, y2)|x+ y ≥ 4, x, y ∈ R+} is convex.
True: Note that the set C = {(x2, y2)|x + y ≥ 4, x, y ∈ R+} is equivalent to {(w, z)|

√
w +

√
z ≥

4, w, z ∈ R+}. By concavity of f(x) =
√
x for x ≥ 0, any linear combination (w3, z3) of any

(w1, z1), (w2, z2) ∈ C has
√
w3 +

√
z3 ≥ 4.

I.2 (dual cone): Given cone K = {x|Ax ≥ 0, x ∈ Rn}, where A ∈ Rm×n its dual cone is
K∗ = {y|AT y ≥ 0, y ∈ Rm}.
False: The dual cone is given by K∗ = {AT y : y ≥ 0, y ∈ Rm}.

I.3 (Convex Function): Given a function f(x) = log(ea1x1 + ea2x2 + ea3x3) with domain D = {x|x ∈
R3}, we can show that f(x) is a convex function for every arbitrary vector a ∈ R3.
True: For any x = (x1, x2, x3), y = (y1, y2, y3) ∈ R3 Consider the linear combination z =
(z1, z2, z3) = (x1, x2, x3)/2 + (y1, y2, y3)/2.

f(z) = log(ea1z1 + ea2z2 + ea3z3)

= log(ea1x1/2ea1y1/2 + ea1x2/2ea1y2/2 + ea3x3/2ea1y3/2)

(a)

≤ log
(
(ea1x1 + ea2x2 + ea3x3)1/2(ea1y1 + ea2y2 + ea3y3)1/2

)
=

1

2
·
(
log(ea1x1 + ea2x2 + ea3x3) + log(ea1y1 + ea2y2 + ea3y3)

)
,

where (a) follows from the Holder inequality (select p = q = 2 in the inequality). The 1/2 linear
combination suffices to show convexity since the domain is dense. Therefore f is convex.

I.4 (Conjugate Function): Given function f(x) = x2
1−4x1x2+x2

2, where x ∈ R2, then the conjugate
of the conjugate function, f∗∗(x), is equal to itself, i.e., f∗∗(x) = f(x).
False: The relationship holds iff f is convex. But f is not convex it can be verified from its Hessian:[

2 −4
−4 2

]
.

I.5 (Convex Function): Function g(x) = minyf(x, y) is convex function, if f(x, y) is a convex func-
tion with respect to variable x.
False: Consider f(x, y) = xy where x ∈ R, y ∈ [−1, 1]. For any fixed value of y = c clearly f(x, c)
is convex. However g(0) = 0 ≥ −1 = (−1− 1)/2 = (g(−1)+ g(1))/2 and therefore g is not convex.

I.6 (Convex Function): Given a differentiable but nonconvex function f(x), where x ∈ Rn, and a
fixed point x̄ ∈ Rn, the hyperplane

[∇f(x̄)T ,−1](

[
x
t

]
−
[

x̄
f(x̄)

]
) = 0

is a supporting hyperplane of epigraph, epi f = {
[
x
t

]
|f(x) ≤ t}.

False: A non-convex f may not have a supporting hyperplane at all points x̄. A simple graphical
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counter example suffices.

I.7 (Problem Formulation): For every convex optimization problem defined as eq. (4.1) in textbook,
where all functions are convex, there is always an optimal solution.
False: Since the region can be unfeasible, e.g. consider the linear programming convex formulation
that may not have an optimal solution when the feasible region is empty.

I.8 (Problem Formulation/Duality): Given a convex programming problem:
minimize f0(x), subject to Ax ≤ b, x ∈ Rn, A ∈ Rm×n, b ∈ Rm,

where f0(x) is a differentiable convex function, we can claim that
∇f0(x̄) ∈ {−AT θ|θ ∈ Rm

+ }
is a necessary condition for x̄ to be an optimal solution.
True: Since Ax ≤ b we obtain the cone K = {x| − Ax ≥ 0} and the gradient at the optimal
solution, ∇f0(x̄), should fall within its dual cone K∗ = {−AT θ|θ ∈ Rm

+ }.

I.9 (Duality): Given a function f(x, y), the inequality
minxmaxy − f(x, y) ≥ maxyminx − f(x, y)

is always true.
True: Follows from applying the min-max theorem to g(x, y) = −f(x, y).

Part II: Problem 1
[Solution]
Properties that we will use in the proof:

1. If p > 0, then ∥tx∥p = |t|∥x∥p, for any x ∈ Rn and t ∈ R.

2. If 0 < p < q, then for any x ∈ Rn, ∥x∥p < ∥x∥q.

3. When p ≥ 1, ∥y∥q = max∥x∥p≤1 y
Tx is the dual norm of ∥x∥p, where 1

p + 1
q = 1. Specifically,

when p = 1, q = ∞.

According to the definition of dual cone, we have

K∗ =
{[

y
s

] ∣∣∣ yTx+ st ≥ 0,∀
[
x
t

]
∈ K

}
According to property 1, for t > 0, we have

∥x∥p ≤ t

1

t
∥x∥p ≤ 1∣∣1

t

∣∣∥x∥p ≤ 1

∥1
t
x∥p ≤ 1
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Thus

K∗ =
{[

y
s

] ∣∣∣ yTx+ st ≥ 0,∀
[
x
t
1

]
∈ K

}
=

{[
y
s

] ∣∣∣ yTx+ s ≥ 0,∀
[
x
1

]
∈ K

}
=

{[
y
s

] ∣∣∣ − yTx+ s ≥ 0,∀
[
−x
1

]
∈ K

}
=

{[
y
s

] ∣∣∣ yTx ≤ s,∀
[
−x
1

]
∈ K

}
According to property 1, ∥x∥p = ∥ − x∥p, therefore

K∗ =
{[

y
s

] ∣∣∣ yTx ≤ s,∀
[
x
1

]
∈ K

}
=

{[
y
s

] ∣∣∣ max
∥x∥p≤1

yTx ≤ s
}

1. When p ≥ 1, according to property 3, we have

K∗ =
{[

y
s

] ∣∣∣ ∥y∥q ≤ s
}

where 1
p + 1

q = 1.

2. When 0 < p < 1, according to property 2, for any x ∈ Rn, ∥x∥p < ∥x∥1 and C ={[
x
t

] ∣∣∣ ∥x∥1 ≤ t
}
is the conic hull of K. This yields a tight upper bound of max∥x∥p≤1 y

Tx:

max
∥x∥p≤1

yTx < max
∥x∥1≤1

yTx

K∗ =
{[

y
s

] ∣∣∣ max
∥x∥1≤1

yTx ≤ s
}

According to property 3, ∥y∥∞ = max∥x∥1≤1 y
Tx, therefore,

K∗ =
{[

y
s

] ∣∣∣ ∥y∥∞ ≤ s
}

Part II: Problem 2
[Solution]

1.
f∗(y) = sup

x∈R2
+

(
yTx− x1x2

)
= sup

x∈R2
+

(y1x1 + y2x2 − x1x2)
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• Case 1 (∃k, yk > 0): Set xk = t > 0, and xi ̸=k = 0. Then:

lim
t→∞

(ykxk + yixi − xkxi) = lim
t→∞

ykt → ∞

Therefore, (∃k, yk > 0) is not in domf∗.

• Case 2 (y ⪯ 0): There exists no way to make any term of the inside of the supremum
positive within the domain. Therefore, the supremum occurs at x = 0 which implies
f∗(y) = 0 in this region.

To summarize:

f∗(y) =

{
0 y ⪯ 0

∞ otherwise

2.

f∗(y) = max

{
sup

||x||p≤a

(
yTx− ||x||pp

)
, sup

||x||p>a

(
yTx− a1−

1
p ||x||p

)}

Let g(y, x) = yTx− ||x||pp and h(y, x) = yTx− a1−
1
p ||x||p.

• Case 1 (p = 1): In this case, the partial function is continuous, and g(y, x) = h(y, x) =
yTx− ||x||1.
– Case 1.1 (∃k, |yk| > 1): yk > 1, for any k. Set xk = t > 0 and xi ̸=k = 0. Then:

lim
t→∞

(
yTx− ||x||1

)
= lim

t→∞
(ykt− t) = lim

t→∞
(yk − 1)t → ∞

Similarly, in the case where yk < −1, for any k, we can set xk = −t < 0 and
xi ̸=k = 0. Then:

lim
t→∞

(
yTx− ||x||1

)
= lim

t→∞
(−ykt− t) = lim

t→∞
(−yk − 1)t → ∞

– Case 1.2 (||y||∞ ≤ 1): In this case, recall Hölder’s inequality: yTx ≤ ||y||q||x||p,
where p-norm and q-norm are duals. Recall that the dual of 1-norm is the ∞-norm.
Since we don’t have constraints on what values ||x||1 can take for p = 1, we know
that equality is trivially achievable for this inequality. Then:

yTx− ||x||1 ≤ ||y||∞||x||1 − ||x||1
yTx− ||x||1 ≤ (||y||∞ − 1) ||x||1

sup
x

(
yTx− ||x||1

)
= 0, for x = 0 since ||y||∞ ≤ 1

• Case 2 (p > 1): Let 1
p + 1

q = 1 =⇒ q = p
p−1 .

– Investigation of sup||x||p≤a g(y, x): This is a bounded case since we don’t have any
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norm division terms in g. We can take the derivative to see where the optimum is:

∇xi
g(y, x) = yi − p|x̂i|p−1 · sign(x̂i) = 0

|yi| = p|x̂i|p−1

|yi|q = pq|x̂i|p∑
i

|yi|q = pq
∑
i

|x̂i|p

||y||qq = pq||x̂||pp
||y||qq
pq

= ||x̂||pp

p
−1
p−1 ||y||

1
p−1
q = ||x̂||p, with ||x̂||p ≤ a

g(x̂, y) = yT x̂− ||x̂||pp = ||y||q||x̂||p − ||x̂||pp
g(x̂, y) =

(
p

−1
p−1 − p

−p
p−1

)
||y||qq, for ||y||q ≤ ap−1p

This optimum is nonnegative, as p
−1
p−1 > p

−p
p−1 for p > 1. It is also a maximum since

∇xxg(y, x) = ∇2
(
−||x||pp

)
= ∇2 (−

∑
i |xi|p) ⪯ 0 (diagonal matrix with nonpositive

diagonal entries.)
For ||y||q > ap−1p, we always have ∇xg(y, x) > 0, so the best possible value that
sup||x||p≤a g(y, x) can provide is at the boundary, ||x||p = a. This value is a||y||q−ap,
with x tuned to satisfy equality in Hölder’s inequality (∀i, |yi|q = k|xi|p for some
constant k.) Therefore:

sup
||x||p≤a

g(y, x) =

{(
p

−1
p−1 − p

−p
p−1

)
||y||qq ||y||q ≤ ap−1p

a||y||q − ap ||y||q > ap−1p

– Investigation of sup||x||p>a h(y, x): For ||y||q > a1−
1
p , let ||y||q = yT z for some

vector z with ||z||p = 1, as per the definition of the dual norm. Then:

||y||q > a1−
1
p

yT z > a1−
1
p ||z||p

yT z − a1−
1
p ||z||p > 0

Set x = tz, t > a. Evaluate the limit of h(y, x) as t → ∞:

lim
t→∞

(
yTx− a1−

1
p ||x||p

)
= lim

t→∞

(
yT z − a1−

1
p ||z||p

)
t → ∞

For ||y||q ≤ a1−
1
p , use Hölder’s inequality, yTx ≤ ||y||q||x||p, with equality achievable

if ∀i, |yi|q = k|xi|p for some constant k (the fact that we’re restricted to the ||x||p > a
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case does not make this impossible for any y.) Then:

yTx− a1−
1
p ||x||p ≤ ||y||q||x||p − a1−

1
p ||x||p

yTx− a1−
1
p ||x||p ≤

(
||y||q − a1−

1
p

)
||x||p

sup
||x||p>a

(
yTx− a1−

1
p ||x||p

)
= a||y||q − a2−

1
p , for ||x||p → a since ||y||q ≤ a1−

1
p

Therefore:

sup
||x||p>a

h(y, x) =

{
a||y||q − a2−

1
p ||y||q ≤ a1−

1
p

∞ ||y||q > a1−
1
p

Now we have to consider the maximum between sup||x||p≤a g(y, x) and sup||x||p>a h(y, x).
Obviously, this is going to depend on regions of y, but also the relationship between p
and a. Based on all of the above, two cases exist:

– Case 2.1 (a1−
1
p ≤ ap−1p): In this case, since ∞ is larger than any finite value,

||y||q > a1−
1
p gives an infinite supremum. Otherwise, ||y||q ≤ a1−

1
p stays within the

bounds of ||y||q ≤ ap−1p, so the supremum in this region becomes the supremum of
||x||p < a, since:

||y||q ≤ a1−
1
p =⇒ ||y||q ≤ a1−

1
p +

(
p

−1
p−1 − p

−p
p−1

) ||y||qq
a

=⇒ a||y||q ≤ a2−
1
p +

(
p

−1
p−1 − p

−p
p−1

)
||y||qq

=⇒ a||y||q − a2−
1
p ≤

(
p

−1
p−1 − p

−p
p−1

)
||y||qq

– Case 2.2 (a1−
1
p > ap−1p): We have one extra region to check compared to Case

2.1, ap−1p < ||y||q ≤ a1−
1
p . This is still the finite region of the ||x||p > a supremum,

so we don’t have to worry about infinity. Notice that:

a1−
1
p > ap−1p =⇒ a2−

1
p > app > ap =⇒ a||y||q − ap > a||y||q − a2−

1
p

The supremum of ||x||p = a dominates the finite value. We can also simplify a1−
1
p >

ap−1p:

a1−
1
p > ap−1p

a2−
1
p−p > p

a
−(p2−2p+1)

p > p

a < p
−p

(p−1)2

In summary (with q = p
p−1 ):

f∗(y) =


0 p = 1 ∧ ||y||∞ ≤ 1(
p

−1
p−1 − p

−p
p−1

)
||y||qq p > 1 ∧ ||y||q ≤ min

{
a1−

1
p , ap−1p

}
a||y||q − ap p > 1 ∧ a < p

−p

(p−1)2 ∧ ap−1p < ||y||q ≤ a1−
1
p

∞ otherwise
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Part II: Problem 3
[Solution]

1. For d free components, we denote the 1s vector in Rd with 1. Write the Lagrangian:

L(x, y, ν1, ν2) = x⊤L′x+ y⊤L′y + b⊤x+ d⊤y + ν11
⊤x+ ν21

⊤y

Let g(ν1, ν2) = infx,y L(x, y, ν1, ν2). Note that L(x, y, ν1, ν2) is convex in x and y. The infimum
can be recovered by solving for the first-order condition. The gradient of g with respect to x
is ∇xL(x, y, ν1ν2) = 2L′x + b + ν11 (likewise for y). Equating to zero and plugging back in
yields the dual problem:

max
ν1,ν2∈R

−1

4

[
(x+ ν11)

⊤L′−1(x+ ν11) + (y + ν21)
⊤L′−1(y + ν21)

]
The corresponding closed form solutions for ν1, ν2 is then given by

ν1 = − 1⊤L−1b

1⊤L−11
ν2 = −1⊤L−1d

1⊤L−11

Note that assuming G is connected, and that there are more than one fixed node, L′ is positive
definite. The principle minors of L are positive, as are the eigenvalues of L′. Alternatively, can
also show that L′ is weakly chained diagonally dominant and therefore nonsingular. I mainly
looked for a correct Lagragian and dual function. The dual problem should not contain primal
variables.

2. Correct implementations of either the closed form or primal / dual problems were accepted.
Note that the constraints of the primal should be something like:

cp.sum(x) == 0

The objective is the same as the one used in homework 4. The minimum of the primal / dual
objectives is around 49.19. The solution should look reasonably close to:
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3. Can demonstrate optimality by deriving (1.) closed form solution (2.) citing duality—e.g.
showing solution to the dual problem yields the same numerical result up to numerical error
(3.) showing solution satisfies kkt conditions up to numerical error.
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