CSE 203B Midterm

Part I: True or False: Explain your answer with one sentence (27 pts)

I. 1 (convex set): Set $\left\{\left(x^{2}, y^{2}\right) \mid x+y \geq 4, x, y \in R_{+}\right\}$is convex.

True: Note that the set $\mathcal{C}=\left\{\left(x^{2}, y^{2}\right) \mid x+y \geq 4, x, y \in R_{+}\right\}$is equivalent to $\{(w, z) \mid \sqrt{w}+\sqrt{z} \geq$ $\left.4, w, z \in R_{+}\right\}$. By concavity of $f(x)=\sqrt{x}$ for $x \geq 0$, any linear combination $\left(w_{3}, z_{3}\right)$ of any $\left(w_{1}, z_{1}\right),\left(w_{2}, z_{2}\right) \in \mathcal{C}$ has $\sqrt{w_{3}}+\sqrt{z_{3}} \geq 4$.
I. 2 (dual cone): Given cone $K=\left\{x \mid A x \geq 0, x \in R^{n}\right\}$, where $A \in R^{m \times n}$ its dual cone is $K^{*}=\left\{y \mid A^{T} y \geq 0, y \in R^{m}\right\}$.
False: The dual cone is given by $K^{*}=\left\{A^{T} y: y \geq 0, y \in R^{m}\right\}$.
I. 3 (Convex Function): Given a function $f(x)=\log \left(e^{a_{1} x_{1}}+e^{a_{2} x_{2}}+e^{a_{3} x_{3}}\right)$ with domain $D=\{x \mid x \in$ $\left.R^{3}\right\}$, we can show that $f(x)$ is a convex function for every arbitrary vector $a \in R^{3}$.
True: For any $x=\left(x_{1}, x_{2}, x_{3}\right), y=\left(y_{1}, y_{2}, y_{3}\right) \in R^{3}$ Consider the linear combination $z=$ $\left(z_{1}, z_{2}, z_{3}\right)=\left(x_{1}, x_{2}, x_{3}\right) / 2+\left(y_{1}, y_{2}, y_{3}\right) / 2$.

$$
\begin{aligned}
f(z) & =\log \left(e^{a_{1} z_{1}}+e^{a_{2} z_{2}}+e^{a_{3} z_{3}}\right) \\
& =\log \left(e^{a_{1} x_{1} / 2} e^{a_{1} y_{1} / 2}+e^{a_{1} x_{2} / 2} e^{a_{1} y_{2} / 2}+e^{a_{3} x_{3} / 2} e^{a_{1} y_{3} / 2}\right) \\
& (a) \\
& \leq \log \left(\left(e^{a_{1} x_{1}}+e^{a_{2} x_{2}}+e^{a_{3} x_{3}}\right)^{1 / 2}\left(e^{a_{1} y_{1}}+e^{a_{2} y_{2}}+e^{a_{3} y_{3}}\right)^{1 / 2}\right) \\
& =\frac{1}{2} \cdot\left(\log \left(e^{a_{1} x_{1}}+e^{a_{2} x_{2}}+e^{a_{3} x_{3}}\right)+\log \left(e^{a_{1} y_{1}}+e^{a_{2} y_{2}}+e^{a_{3} y_{3}}\right)\right)
\end{aligned}
$$

where (a) follows from the Holder inequality (select $p=q=2$ in the inequality). The $1 / 2$ linear combination suffices to show convexity since the domain is dense. Therefore f is convex.
I. 4 (Conjugate Function): Given function $f(x)=x_{1}^{2}-4 x_{1} x_{2}+x_{2}^{2}$, where $x \in R^{2}$, then the conjugate of the conjugate function, $f^{* *}(x)$, is equal to itself, i.e., $f^{* *}(x)=f(x)$.
False: The relationship holds iff f is convex. But f is not convex it can be verified from its Hessian:

$$
\left[\begin{array}{cc}
2 & -4 \\
-4 & 2
\end{array}\right]
$$

I. 5 (Convex Function): Function $g(x)=\min _{y} f(x, y)$ is convex function, if $f(x, y)$ is a convex function with respect to variable x.
False: Consider $f(x, y)=x y$ where $x \in R, y \in[-1,1]$. For any fixed value of $y=c$ clearly $f(x, c)$ is convex. However $g(0)=0 \geq-1=(-1-1) / 2=(g(-1)+g(1)) / 2$ and therefore g is not convex.
I. 6 (Convex Function): Given a differentiable but nonconvex function $f(x)$, where $x \in R^{n}$, and a fixed point $\bar{x} \in R^{n}$, the hyperplane

$$
\left[\nabla f(\bar{x})^{T},-1\right]\left(\left[\begin{array}{l}
x \\
t
\end{array}\right]-\left[\begin{array}{c}
\bar{x} \\
f(\bar{x})
\end{array}\right]\right)=0
$$

is a supporting hyperplane of epigraph, epi $f=\left\{\left.\left[\begin{array}{l}x \\ t\end{array}\right] \right\rvert\, f(x) \leq t\right\}$.
False: A non-convex f may not have a supporting hyperplane at all points \bar{x}. A simple graphical
counter example suffices.
I. 7 (Problem Formulation): For every convex optimization problem defined as eq. (4.1) in textbook, where all functions are convex, there is always an optimal solution.
False: Since the region can be unfeasible, e.g. consider the linear programming convex formulation that may not have an optimal solution when the feasible region is empty.
I. 8 (Problem Formulation/Duality): Given a convex programming problem:
minimize $f_{0}(x)$, subject to $A x \leq b, x \in R^{n}, A \in R^{m \times n}, b \in R^{m}$,
where $f_{0}(x)$ is a differentiable convex function, we can claim that $\nabla f_{0}(\bar{x}) \in\left\{-A^{T} \theta \mid \theta \in R_{+}^{m}\right\}$
is a necessary condition for \bar{x} to be an optimal solution.
True: Since $A x \leq b$ we obtain the cone $K=\{x \mid-A x \geq 0\}$ and the gradient at the optimal solution, $\nabla f_{0}(\bar{x})$, should fall within its dual cone $K^{*}=\left\{-A^{T} \theta \mid \theta \in R_{+}^{m}\right\}$.
I. 9 (Duality): Given a function $f(x, y)$, the inequality $\min _{x} \max _{y}-f(x, y) \geq \max _{y} \min _{x}-f(x, y)$
is always true.
True: Follows from applying the min-max theorem to $g(x, y)=-f(x, y)$.

Part II: Problem 1

[Solution]

Properties that we will use in the proof:

1. If $p>0$, then $\|t x\|_{p}=|t|\|x\|_{p}$, for any $x \in \mathbb{R}^{n}$ and $t \in \mathbb{R}$.
2. If $0<p<q$, then for any $x \in \mathbb{R}^{n},\|x\|_{p}<\|x\|_{q}$.
3. When $p \geq 1,\|y\|_{q}=\max _{\|x\|_{p} \leq 1} y^{T} x$ is the dual norm of $\|x\|_{p}$, where $\frac{1}{p}+\frac{1}{q}=1$. Specifically, when $p=1, q=\infty$.

According to the definition of dual cone, we have

$$
K^{*}=\left\{\left.\left[\begin{array}{l}
y \\
s
\end{array}\right] \right\rvert\, y^{T} x+s t \geq 0, \forall\left[\begin{array}{l}
x \\
t
\end{array}\right] \in K\right\}
$$

According to property 1 , for $t>0$, we have

$$
\begin{aligned}
\|x\|_{p} & \leq t \\
\frac{1}{t}\|x\|_{p} & \leq 1 \\
\left|\frac{1}{t}\right|\|x\|_{p} & \leq 1 \\
\left\|\frac{1}{t} x\right\|_{p} & \leq 1
\end{aligned}
$$

Thus

$$
\begin{aligned}
K^{*} & =\left\{\left.\left[\begin{array}{l}
y \\
s
\end{array}\right] \right\rvert\, y^{T} x+s t \geq 0, \forall\left[\begin{array}{c}
\frac{x}{t} \\
1
\end{array}\right] \in K\right\} \\
& =\left\{\left.\left[\begin{array}{l}
y \\
s
\end{array}\right] \right\rvert\, y^{T} x+s \geq 0, \forall\left[\begin{array}{l}
x \\
1
\end{array}\right] \in K\right\} \\
& =\left\{\left.\left[\begin{array}{l}
y \\
s
\end{array}\right] \right\rvert\,-y^{T} x+s \geq 0, \forall\left[\begin{array}{c}
-x \\
1
\end{array}\right] \in K\right\} \\
& =\left\{\left.\left[\begin{array}{l}
y \\
s
\end{array}\right] \right\rvert\, y^{T} x \leq s, \forall\left[\begin{array}{c}
-x \\
1
\end{array}\right] \in K\right\}
\end{aligned}
$$

According to property $1,\|x\|_{p}=\|-x\|_{p}$, therefore

$$
\begin{aligned}
K^{*} & =\left\{\left.\left[\begin{array}{c}
y \\
s
\end{array}\right] \right\rvert\, \quad y^{T} x \leq s, \forall\left[\begin{array}{c}
x \\
1
\end{array}\right] \in K\right\} \\
& =\left\{\left.\left[\begin{array}{c}
y \\
s
\end{array}\right] \right\rvert\, \quad \max _{\|x\|_{p} \leq 1} y^{T} x \leq s\right\}
\end{aligned}
$$

1. When $p \geq 1$, according to property 3 , we have

$$
K^{*}=\left\{\left.\left[\begin{array}{l}
y \\
s
\end{array}\right] \right\rvert\,\|y\|_{q} \leq s\right\}
$$

where $\frac{1}{p}+\frac{1}{q}=1$.
2. When $0<p<1$, according to property 2 , for any $x \in \mathbb{R}^{n},\|x\|_{p}<\|x\|_{1}$ and $C=$ $\left\{\left.\left[\begin{array}{l}x \\ t\end{array}\right] \right\rvert\,\|x\|_{1} \leq t\right\}$ is the conic hull of K. This yields a tight upper bound of $\max _{\|x\|_{p} \leq 1} y^{T} x$:

$$
\begin{gathered}
\max _{\|x\|_{p} \leq 1} y^{T} x<\max _{\|x\|_{1} \leq 1} y^{T} x \\
K^{*}=\left\{\left.\left[\begin{array}{l}
y \\
s
\end{array}\right] \right\rvert\, \max _{\|x\|_{1} \leq 1} y^{T} x \leq s\right\}
\end{gathered}
$$

According to property $3,\|y\|_{\infty}=\max _{\|x\|_{1} \leq 1} y^{T} x$, therefore,

$$
K^{*}=\left\{\left.\left[\begin{array}{l}
y \\
s
\end{array}\right] \right\rvert\, \quad\|y\|_{\infty} \leq s\right\}
$$

Part II: Problem 2

[Solution]
1.

$$
f^{*}(y)=\sup _{x \in \mathbb{R}_{+}^{2}}\left(y^{T} x-x_{1} x_{2}\right)=\sup _{x \in \mathbb{R}_{+}^{2}}\left(y_{1} x_{1}+y_{2} x_{2}-x_{1} x_{2}\right)
$$

- Case $1\left(\exists k, y_{k}>0\right)$: Set $x_{k}=t>0$, and $x_{i \neq k}=0$. Then:

$$
\lim _{t \rightarrow \infty}\left(y_{k} x_{k}+y_{i} x_{i}-x_{k} x_{i}\right)=\lim _{t \rightarrow \infty} y_{k} t \rightarrow \infty
$$

Therefore, $\left(\exists k, y_{k}>0\right)$ is not in $\operatorname{dom} f^{*}$.

- Case $2(y \preceq 0)$: There exists no way to make any term of the inside of the supremum positive within the domain. Therefore, the supremum occurs at $x=0$ which implies $f^{*}(y)=0$ in this region.

To summarize:

$$
f^{*}(y)= \begin{cases}0 & y \preceq 0 \\ \infty & \text { otherwise }\end{cases}
$$

2.

$$
f^{*}(y)=\max \left\{\sup _{\|x\|_{p} \leq a}\left(y^{T} x-\|x\|_{p}^{p}\right), \sup _{\|x\|_{p}>a}\left(y^{T} x-a^{1-\frac{1}{p}}\|x\|_{p}\right)\right\}
$$

Let $g(y, x)=y^{T} x-\|x\|_{p}^{p}$ and $h(y, x)=y^{T} x-a^{1-\frac{1}{p}}\|x\|_{p}$.

- Case $1(p=1)$: In this case, the partial function is continuous, and $g(y, x)=h(y, x)=$ $y^{T} x-\|x\|_{1}$.
- Case $1.1\left(\exists k,\left|y_{k}\right|>1\right): y_{k}>1$, for any k. Set $x_{k}=t>0$ and $x_{i \neq k}=0$. Then:

$$
\lim _{t \rightarrow \infty}\left(y^{T} x-\|x\|_{1}\right)=\lim _{t \rightarrow \infty}\left(y_{k} t-t\right)=\lim _{t \rightarrow \infty}\left(y_{k}-1\right) t \rightarrow \infty
$$

Similarly, in the case where $y_{k}<-1$, for any k, we can set $x_{k}=-t<0$ and $x_{i \neq k}=0$. Then:

$$
\lim _{t \rightarrow \infty}\left(y^{T} x-\|x\|_{1}\right)=\lim _{t \rightarrow \infty}\left(-y_{k} t-t\right)=\lim _{t \rightarrow \infty}\left(-y_{k}-1\right) t \rightarrow \infty
$$

- Case $1.2\left(\|y\|_{\infty} \leq 1\right)$: In this case, recall Hölder's inequality: $y^{T} x \leq\|y\|_{q}\|x\|_{p}$, where p-norm and q-norm are duals. Recall that the dual of 1 -norm is the ∞-norm. Since we don't have constraints on what values $\|x\|_{1}$ can take for $p=1$, we know that equality is trivially achievable for this inequality. Then:

$$
\begin{aligned}
y^{T} x-\|x\|_{1} & \leq\|y\|_{\infty}\|x\|_{1}-\|x\|_{1} \\
y^{T} x-\|x\|_{1} & \leq\left(\|y\|_{\infty}-1\right)\|x\|_{1} \\
\sup _{x}\left(y^{T} x-\|x\|_{1}\right) & =0, \text { for } x=0 \text { since }\|y\|_{\infty} \leq 1
\end{aligned}
$$

- Case $2(p>1)$: Let $\frac{1}{p}+\frac{1}{q}=1 \Longrightarrow q=\frac{p}{p-1}$.
- Investigation of $\sup _{\|x\|_{p} \leq a} g(y, x)$: This is a bounded case since we don't have any
norm division terms in g. We can take the derivative to see where the optimum is:

$$
\begin{aligned}
\nabla_{x_{i}} g(y, x)=y_{i}-p\left|\hat{x}_{i}\right|^{p-1} \cdot \operatorname{sign}\left(\hat{x}_{i}\right) & =0 \\
\left|y_{i}\right| & =p\left|\hat{x}_{i}\right|^{p-1} \\
\left|y_{i}\right|^{q} & =p^{q}\left|\hat{x}_{i}\right|^{p} \\
\sum_{i}\left|y_{i}\right|^{q} & =p^{q} \sum_{i}\left|\hat{x}_{i}\right|^{p} \\
\|y\|_{q}^{q} & =p^{q}\|\hat{x}\|_{p}^{p} \\
\frac{\|y\|_{q}^{q}}{p^{q}} & =\|\hat{x}\|_{p}^{p} \\
p^{\frac{-1}{p-1}}\|y\|_{q}^{\frac{1}{p-1}} & =\|\hat{x}\|_{p}, \text { with }\|\hat{x}\|_{p} \leq a \\
g(\hat{x}, y)=y^{T} \hat{x}-\|\hat{x}\|_{p}^{p} & =\|y\|_{q}\|\hat{x}\|_{p}-\|\hat{x}\|_{p}^{p} \\
g(\hat{x}, y) & =\left(p^{\frac{-1}{p-1}}-p^{\frac{-p}{p-1}}\right)\|y\|_{q}^{q}, \text { for }\|y\|_{q} \leq a^{p-1} p
\end{aligned}
$$

This optimum is nonnegative, as $p^{\frac{-1}{p-1}}>p^{\frac{-p}{p-1}}$ for $p>1$. It is also a maximum since $\nabla_{x x} g(y, x)=\nabla^{2}\left(-\|x\|_{p}^{p}\right)=\nabla^{2}\left(-\sum_{i}\left|x_{i}\right|^{p}\right) \preceq 0$ (diagonal matrix with nonpositive diagonal entries.)
For $\|y\|_{q}>a^{p-1} p$, we always have $\nabla_{x} g(y, x)>0$, so the best possible value that $\sup _{\|x\|_{p} \leq a} g(y, x)$ can provide is at the boundary, $\|x\|_{p}=a$. This value is $a\|y\|_{q}-a^{p}$, with x tuned to satisfy equality in Hölder's inequality $\left(\forall i,\left|y_{i}\right|^{q}=k\left|x_{i}\right|^{p}\right.$ for some constant k.) Therefore:

$$
\sup _{\|x\|_{p} \leq a} g(y, x)= \begin{cases}\left(p^{\frac{-1}{p-1}}-p^{\frac{-p}{p-1}}\right)\|y\|_{q}^{q} & \|y\|_{q} \leq a^{p-1} p \\ a\|y\|_{q}-a^{p} & \|y\|_{q}>a^{p-1} p\end{cases}
$$

- Investigation of $\sup _{\|x\|_{p}>a} h(y, x)$: For $\|y\|_{q}>a^{1-\frac{1}{p}}$, let $\|y\|_{q}=y^{T} z$ for some vector z with $\|z\|_{p}=1$, as per the definition of the dual norm. Then:

$$
\begin{aligned}
\|y\|_{q} & >a^{1-\frac{1}{p}} \\
y^{T} z & >a^{1-\frac{1}{p}}\|z\|_{p} \\
y^{T} z-a^{1-\frac{1}{p}}\|z\|_{p} & >0
\end{aligned}
$$

Set $x=t z, t>a$. Evaluate the limit of $h(y, x)$ as $t \rightarrow \infty$:

$$
\lim _{t \rightarrow \infty}\left(y^{T} x-a^{1-\frac{1}{p}}\|x\|_{p}\right)=\lim _{t \rightarrow \infty}\left(y^{T} z-a^{1-\frac{1}{p}}\|z\|_{p}\right) t \rightarrow \infty
$$

For $\|y\|_{q} \leq a^{1-\frac{1}{p}}$, use Hölder's inequality, $y^{T} x \leq\|y\|_{q}\|x\|_{p}$, with equality achievable if $\forall i,\left|y_{i}\right|^{q}=k\left|x_{i}\right|^{p}$ for some constant k (the fact that we're restricted to the $\|x\|_{p}>a$
case does not make this impossible for any y.) Then:

$$
\begin{aligned}
y^{T} x-a^{1-\frac{1}{p}}\|x\|_{p} & \leq\|y\|_{q}\|x\|_{p}-a^{1-\frac{1}{p}}\|x\|_{p} \\
y^{T} x-a^{1-\frac{1}{p}}\|x\|_{p} & \leq\left(\|y\|_{q}-a^{1-\frac{1}{p}}\right)\|x\|_{p} \\
\sup _{\|x\|_{p}>a}\left(y^{T} x-a^{1-\frac{1}{p}}\|x\|_{p}\right) & =a\|y\|_{q}-a^{2-\frac{1}{p}}, \text { for }\|x\|_{p} \rightarrow a \text { since }\|y\|_{q} \leq a^{1-\frac{1}{p}}
\end{aligned}
$$

Therefore:

$$
\sup _{\|x\|_{p}>a} h(y, x)= \begin{cases}a\|y\|_{q}-a^{2-\frac{1}{p}} & \|y\|_{q} \leq a^{1-\frac{1}{p}} \\ \infty & \|y\|_{q}>a^{1-\frac{1}{p}}\end{cases}
$$

Now we have to consider the maximum between $\sup _{\|x\|_{p} \leq a} g(y, x)$ and $\sup _{\|x\|_{p}>a} h(y, x)$. Obviously, this is going to depend on regions of y, but also the relationship between p and a. Based on all of the above, two cases exist:

- Case $2.1\left(a^{1-\frac{1}{p}} \leq a^{p-1} p\right)$: In this case, since ∞ is larger than any finite value, $\|y\|_{q}>a^{1-\frac{1}{p}}$ gives an infinite supremum. Otherwise, $\|y\|_{q} \leq a^{1-\frac{1}{p}}$ stays within the bounds of $\|y\|_{q} \leq a^{p-1} p$, so the supremum in this region becomes the supremum of $\|x\|_{p}<a$, since:

$$
\begin{aligned}
\|y\|_{q} \leq a^{1-\frac{1}{p}} & \Longrightarrow\|y\|_{q} \leq a^{1-\frac{1}{p}}+\left(p^{\frac{-1}{p-1}}-p^{\frac{-p}{p-1}}\right) \frac{\|y\|_{q}^{q}}{a} \\
& \Longrightarrow a\|y\|_{q} \leq a^{2-\frac{1}{p}}+\left(p^{\frac{-1}{p-1}}-p^{\frac{-p}{p-1}}\right)\|y\|_{q}^{q} \\
& \Longrightarrow a\|y\|_{q}-a^{2-\frac{1}{p}} \leq\left(p^{\frac{-1}{p-1}}-p^{\frac{-p}{p-1}}\right)\|y\|_{q}^{q}
\end{aligned}
$$

- Case $2.2\left(a^{1-\frac{1}{p}}>a^{p-1} p\right)$: We have one extra region to check compared to Case 2.1, $a^{p-1} p<\|y\|_{q} \leq a^{1-\frac{1}{p}}$. This is still the finite region of the $\|x\|_{p}>a$ supremum, so we don't have to worry about infinity. Notice that:

$$
a^{1-\frac{1}{p}}>a^{p-1} p \Longrightarrow a^{2-\frac{1}{p}}>a^{p} p>a^{p} \Longrightarrow a\|y\|_{q}-a^{p}>a\|y\|_{q}-a^{2-\frac{1}{p}}
$$

The supremum of $\|x\|_{p}=a$ dominates the finite value. We can also simplify $a^{1-\frac{1}{p}}>$ $a^{p-1} p$:

$$
\begin{aligned}
a^{1-\frac{1}{p}} & >a^{p-1} p \\
a^{2-\frac{1}{p}-p} & >p \\
a^{\frac{-\left(p^{2}-2 p+1\right)}{p}} & >p \\
a & <p^{\frac{-p}{(p-1)^{2}}}
\end{aligned}
$$

In summary (with $q=\frac{p}{p-1}$):

$$
f^{*}(y)= \begin{cases}0 & p=1 \wedge\|y\|_{\infty} \leq 1 \\ \left(p^{\frac{-1}{p-1}}-p^{\frac{-p}{p-1}}\right)\|y\|_{q}^{q} & p>1 \wedge\|y\|_{q} \leq \min \left\{a^{1-\frac{1}{p}}, a^{p-1} p\right\} \\ a\|y\|_{q}-a^{p} & p>1 \wedge a<p^{\frac{-p}{(p-1)^{2}}} \wedge a^{p-1} p<\|y\|_{q} \leq a^{1-\frac{1}{p}} \\ \infty & \text { otherwise }\end{cases}
$$

Part II: Problem 3

[Solution]

1. For d free components, we denote the 1 s vector in \mathbb{R}^{d} with 1 . Write the Lagrangian:

$$
L\left(x, y, \nu_{1}, \nu_{2}\right)=x^{\top} L^{\prime} x+y^{\top} L^{\prime} y+b^{\top} x+d^{\top} y+\nu_{1} \mathbf{1}^{\top} x+\nu_{2} \mathbf{1}^{\top} y
$$

Let $g\left(\nu_{1}, \nu_{2}\right)=\inf _{x, y} L\left(x, y, \nu_{1}, \nu_{2}\right)$. Note that $L\left(x, y, \nu_{1}, \nu_{2}\right)$ is convex in x and y. The infimum can be recovered by solving for the first-order condition. The gradient of g with respect to x is $\nabla_{x} L\left(x, y, \nu_{1} \nu_{2}\right)=2 L^{\prime} x+b+\nu_{1} \mathbf{1}$ (likewise for y). Equating to zero and plugging back in yields the dual problem:

$$
\max _{\nu_{1}, \nu_{2} \in \mathbb{R}}-\frac{1}{4}\left[\left(x+\nu_{1} \mathbf{1}\right)^{\top} L^{\prime-1}\left(x+\nu_{1} \mathbf{1}\right)+\left(y+\nu_{2} \mathbf{1}\right)^{\top} L^{\prime-1}\left(y+\nu_{2} \mathbf{1}\right)\right]
$$

The corresponding closed form solutions for ν_{1}, ν_{2} is then given by

$$
\nu_{1}=-\frac{\mathbf{1}^{\top} L^{-1} b}{\mathbf{1}^{\top} L^{-1} \mathbf{1}} \quad \nu_{2}=-\frac{\mathbf{1}^{\top} L^{-1} d}{\mathbf{1}^{\top} L^{-1} \mathbf{1}}
$$

Note that assuming G is connected, and that there are more than one fixed node, L^{\prime} is positive definite. The principle minors of L are positive, as are the eigenvalues of L^{\prime}. Alternatively, can also show that L^{\prime} is weakly chained diagonally dominant and therefore nonsingular. I mainly looked for a correct Lagragian and dual function. The dual problem should not contain primal variables.
2. Correct implementations of either the closed form or primal / dual problems were accepted. Note that the constraints of the primal should be something like:

```
cp.sum(x) == 0
```

The objective is the same as the one used in homework 4. The minimum of the primal / dual objectives is around 49.19. The solution should look reasonably close to:

3. Can demonstrate optimality by deriving (1.) closed form solution (2.) citing duality-e.g. showing solution to the dual problem yields the same numerical result up to numerical error (3.) showing solution satisfies kkt conditions up to numerical error.

