Midterm Review for CSE 203B

Chester Holtz

Based on slides by Fangchen Liu
\& Prof. Stephen Boyd

Logistics

- Released on course website: http://cseweb.ucsd.edu/classes/wi21/cse203B-a/
- Full 48 hours, submission on gradescope
- Released Tuesday 2/16 10:00 am PST, due Thursday 2/18 10:00 am PST
- 2 sections:
- ~ 10 True/False (with explanation)
- ~ 5 Derivations/simple proofs
- At least one programming question
- ~ 70\% based on homework questions
- No questions will be answered on piazza (sorry!)

Overview

- Convex sets
- Convex separation
- Convex functions
- Conjugate function
- Lagrangian Dual
- Logistics and other recommended topics

Convex sets: definition

- A set $S \subseteq \mathbb{R}^{d}$ is convex if the line segment between any two points in C lies in C : for any $x_{1}, x_{2} \in C$ and $0 \leq \theta \leq 1$, $\theta x_{1}(1-\theta) x_{2} \in C$
- Example: the polytope $\mathcal{K}=\{x \mid A x \leq b\}$ for $x, b \in \mathbb{R}^{d}$, $A \in \mathbb{R}^{m \times n}$

Supporting Hyperplane Theorem

A supporting hyperplane to a set C is defined with respect to a boundary point x_{0} :

$$
\left\{x \mid a^{T} x=a^{T} x_{0}\right\}
$$

where $a \neq 0$ and $a^{T} x \leq a^{T} x_{0}$ for all $x \in C$.

Supporting hyperplane theorem: If C is convex, then there exists a supporting hyperplane at every boundary point of C.

Separating Hyperplane Theorem

If C and D are nonempty disjoint convex sets, there exists $a \neq 0$
s.t.

$$
a^{T} x \leq b \text { for } x \in C, \quad a^{T} x \geq b \text { for } x \in D
$$

The hyperplane $\left\{x \mid a^{T} x=b\right\}$ separates C and D.
Strict separation requires additional assumptions (e.g. C is closed, D is a singleton).

Convex functions: definition

- A function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is convex if dom f is a convex set and if for all $x, y \in \operatorname{dom} f$ and $0 \leq \theta \leq 1$
$f(\theta x+(1-\theta) y) \leq \theta f(x)+(1-\theta) f(y)$ Jensen's inequality
- Concave functions: $-f$ is convex

Convex functions: definition

- A function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is convex if dom f is a convex set and if for all $x, y \in \operatorname{dom} f$ and $0 \leq \theta \leq 1$
$f(\theta x+(1-\theta) y) \leq \theta f(x)+(1-\theta) f(y)$ Jensen's inequality
- Concave functions: $-f$ is convex

Convex functions: first order condition

- If f is differentiable (domf is open, ∇f exists $\forall x \in \operatorname{dom} f$) then f is convex iff dom f is convex and for all $x, y \in \operatorname{dom} \mathrm{f}$

$$
f(y) \geq f(x)+\nabla f(x)^{T}(y-x)
$$

Convex functions: second order condition

- Suppose f is twice-differentiable (domf is open and its Hessian exists $\forall x \in \operatorname{dom} f$) then f is convex iff $\operatorname{dom} f \operatorname{dom} f$ is convex and for all $x, y \in \operatorname{dom} \mathrm{f}$

$$
\nabla^{2} f \succcurlyeq 0 \quad \text { (positive semidefinite) }
$$

Convex functions: establishing convexity

By definition

- Show by definition or first-order condition
- For twice-differentiable functions, show $\nabla^{2} f \succcurlyeq 0$

By convexity-preserving operations

- Nonnegative weighted sum
- Composition with affine function
- Pointwise maximum and supremum
- Composition
- Minimization
- Perspective

Convex functions: establishing convexity

By definition

- Show by definition or first-order condition
- For twice-differentiable functions, show $\nabla^{2} f \succcurlyeq 0$

By convexity-preserving operations

- Nonnegative weighted sum
- Composition with affine function
- Pointwise maximum and supremum
- Composition
- Minimization
- Perspective

Convex functions: relationship with convex sets

- A function is convex iff its epigraph is a convex set
- Consider a convex function f and $x, y \in \operatorname{dom} f$

$$
t \geq f(y) \geq f(x)+\nabla f(x)^{T}(y-x)
$$

- The hyperplane supports epif at $x, f(x)$, for any

$$
\begin{aligned}
& y, t \in \mathrm{epif} \\
& \quad \Longrightarrow \nabla f(x)^{T}(y-x)+f(x)-t \leq 0
\end{aligned}
$$

Convex functions: examples

powers of absolute value
$f=|x|^{p}$ is convex on $\mathbb{R}++$ and $p>1$

Pf: Note that the composition of a convex and convex-increasing function is convex. Prove $|\cdot|$ is convex and x^{p} is convex and increasing.

TODO: Show log-convex function is convex $(g(x)=\log (f(x))$, s.t. f convex. (first show for f twice-differentiable))

Convex functions: examples

quadratic form of inverse
$f: \mathbb{R}^{n} \times S^{n} \rightarrow \mathbb{R}, f(x, Y)=x^{T} Y^{-1} x$ is convex on $\mathbb{R}^{n} \times S_{++}^{n}$

Pf: Show epigraph of f is a convex set. Express epigraph as an LMI and apply the definiteness conditions of the Schur Complement (appendix 5.5).

Conjugate function

- Given a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$, the conjugate function

$$
f^{*}(x)=\sup _{x \in \operatorname{dom} f} y^{\top} x-f(x)
$$

- $\operatorname{dom} f^{*}$ consists of $y \in \operatorname{dom} f$ such that $\sup _{y \in \operatorname{dom} f} y^{\top} x-f(x)$ is bounded.
- $f^{*}(x)$ is convex even if $f(x)$ is not convex

Pointwise supremum

- If for each $y \in U f(x, y)$ is convex in x, then

$$
g(x)=\sup _{x \in U} f(x, y)
$$

is convex in x.

- Example: $f^{*}(x)=\sup _{x \in \operatorname{dom} f} y^{\top} x-f(x)$
- Example: First order condition for convex functions

Duality

Primal problem

$$
\begin{aligned}
& \min f_{0}(x) \\
& f_{i}(x) \leq 0 \\
& h_{i}(x)=0
\end{aligned}
$$

Lagrange dual function $g: \mathbb{R}^{m} \times \mathbb{R}^{p} \rightarrow \mathbb{R}$

$$
\begin{aligned}
g(\lambda, \nu) & =\inf _{x \in \mathcal{D}} L(x, \lambda, \nu) \\
& =\inf _{x \in \mathcal{D}}\left(f_{0}(x)+\sum_{i=1}^{m} \lambda_{i} f_{i}(x)+\sum_{i=1}^{p} \nu_{i} h_{i}(x)\right)
\end{aligned}
$$

Duality

Lagrange dual function $g: \mathbb{R}^{m} \times \mathbb{R}^{p} \rightarrow \mathbb{R}$

$$
\begin{aligned}
g(\lambda, \nu) & =\inf _{x \in \mathcal{D}} L(x, \lambda, \nu) \\
& =\inf _{x \in \mathcal{D}}\left(f_{0}(x)+\sum_{i=1}^{m} \lambda_{i} f_{i}(x)+\sum_{i=1}^{p} \nu_{i} h_{i}(x)\right)
\end{aligned}
$$

g is concave, can be unbounded for some $-\lambda, \nu$.
Lower bound property
If $\lambda \geq 0$, then $g(\lambda, \nu) \leq p^{*}$.
proof: if \bar{x} is feasible and $\lambda \geq 0$ then

$$
f_{0}(\bar{x}) \geq L(\bar{x}, \lambda, \nu) \geq \inf _{x \in \mathcal{D}} L(\bar{x}, \lambda, \nu)=g(\lambda, \nu)
$$

minimizing over all feasible \bar{x} gives $p^{*} \geq g(\lambda, \nu)$.

Duality

Lagrange dual function $g: \mathbb{R}^{m} \times \mathbb{R}^{p} \rightarrow \mathbb{R}$

$$
\begin{aligned}
g(\lambda, \nu) & =\inf _{x \in \mathcal{D}} L(x, \lambda, \nu) \\
& =\inf _{x \in \mathcal{D}}\left(f_{0}(x)+\sum_{i=1}^{m} \lambda_{i} f_{i}(x)+\sum_{i=1}^{p} \nu_{i} h_{i}(x)\right)
\end{aligned}
$$

g is concave, can be unbounded for some $-\lambda, \nu$.
Lower bound property
If $\lambda \geq 0$, then $g(\lambda, \nu) \leq p^{*}$.
proof: if \bar{x} is feasible and $\lambda \geq 0$ then

$$
f_{0}(\bar{x}) \geq L(\bar{x}, \lambda, \nu) \geq \inf _{x \in \mathcal{D}} L(\bar{x}, \lambda, \nu)=g(\lambda, \nu)
$$

minimizing over all feasible \bar{x} gives $p^{*} \geq g(\lambda, \nu)$.

Duality example: Primal and Dual of an LP

$$
\begin{aligned}
& \min _{x} c^{T} x \\
& \text { s.t. } \quad A x \leq 0
\end{aligned}
$$

- The feasible set is the polytope $K=\{x \mid A x \leq b\}$
- The Lagrange dual function of the primal problem is

$$
g(\lambda)=\inf _{x}\left(c^{\top} x+\lambda A x\right)= \begin{cases}0 & A^{T} \lambda+c=0, \lambda \geq 0 \\ -\infty & \text { otherwise }\end{cases}
$$

- The dual problem is

$$
\begin{array}{ll}
\max & 0 \\
\text { s.t. } & A^{T} \lambda+c=0 \\
& \lambda \geq 0
\end{array}
$$

Duality example: Primal and Dual of an LP

$$
\begin{aligned}
& \min _{x} c^{\top} x \\
& \text { s.t. } \quad A x \leq 0
\end{aligned}
$$

- The feasible set is the polytope $K=\{x \mid A x \leq b\}$
- The Lagrange dual function of the primal problem is

$$
g(\lambda)=\inf _{x}\left(c^{T} x+\lambda A x\right)= \begin{cases}0 & A^{T} \lambda+c=0, \lambda \geq 0 \\ -\infty & \text { otherwise }\end{cases}
$$

- The dual problem is

$$
\begin{array}{ll}
\max & 0 \\
\text { s.t. } & A^{T} \lambda+c=0 \\
& \lambda \geq 0
\end{array}
$$

Duality example: Primal and Dual of an LP

$$
\begin{aligned}
& \min _{x} c^{T} x \\
& \text { s.t. } \quad A x \leq 0
\end{aligned}
$$

- The feasible set is the polytope $K=\{x \mid A x \leq b\}$
- The Lagrange dual function of the primal problem is

$$
g(\lambda)=\inf _{x}\left(c^{T} x+\lambda A x\right)= \begin{cases}0 & A^{T} \lambda+c=0, \lambda \geq 0 \\ -\infty & \text { otherwise }\end{cases}
$$

- The dual problem is

$$
\begin{array}{ll}
\max & 0 \\
\text { s.t. } & A^{T} \lambda+c=0 \\
& \lambda \geq 0
\end{array}
$$

Duality example: Primal and Dual of an LP

$$
\begin{aligned}
& \min _{x} c^{T} x \\
& \text { s.t. } \quad A x \leq 0
\end{aligned}
$$

- The feasible set is the polytope $K=\{x \mid A x \leq b\}$
- The Lagrange dual function of the primal problem is

$$
g(\lambda)=\inf _{x}\left(c^{T} x+\lambda A x\right)= \begin{cases}0 & A^{T} \lambda+c=0, \lambda \geq 0 \\ -\infty & \text { otherwise }\end{cases}
$$

- The dual problem is

$$
\begin{array}{ll}
\max & 0 \\
\text { s.t. } & A^{T} \lambda+c=0 \\
& \lambda \geq 0
\end{array}
$$

Duality example: Primal and Dual of an LP

$$
\begin{aligned}
& \min _{x} c^{T} x \\
& \text { s.t. } \quad A x \leq 0
\end{aligned}
$$

- The feasible set is the polytope $K=\{x \mid A x \leq b\}$
- The Lagrange dual function of the primal problem is

$$
g(\lambda)=\inf _{x}\left(c^{T} x+\lambda A x\right)= \begin{cases}0 & A^{T} \lambda+c=0, \lambda \geq 0 \\ -\infty & \text { otherwise }\end{cases}
$$

- The dual problem is
$\max 0$
s.t. $A^{T} \lambda+c=0$

$$
\lambda \geq 0
$$

- Farkas lemma: $A x \leq 0, \quad c^{T} x<0$ where $A \in \mathbb{R}^{m \times n}, c \in \mathbb{R}^{n}$ is satisfied for some x iff $A \lambda=c$ s.t. $\lambda \geq 0$ has no solution.

Saddle point interpretation

- Max-min inequality for any f :

$$
\sup _{z \in Z} \inf _{w \in W} f(w, z) \leq \inf _{w \in W} \sup _{z \in Z} f(w, z)
$$

- Now, consider the optimal values of the primal and dual problems:

$$
p^{*}=\inf _{x} \sup _{\lambda \geq 0} L(x, \lambda) \geq \sup _{\lambda \geq 0} \inf _{x} L(x, \lambda)
$$

Other

- Definitions and examples
- Duality
- Classification of convex problems: LP, GP, SOCP, QCQP, etc.
- CVXPY \& Python

