Midterm Review for CSE 203B

Chester Holtz

Based on slides by Fangchen Liu
& Prof. Stephen Boyd



Logistics

P> Released on course website:
http://cseweb.ucsd.edu/classes/wi21/cse203B-a/

» Full 48 hours, submission on gradescope

» Released Tuesday 2/16 10:00 am PST, due Thursday 2/18
10:00 am PST
» 2 sections:

» ~ 10 True/False (with explanation)
» ~ 5 Derivations/simple proofs

» At least one programming question

» ~ 70% based on homework questions

» No questions will be answered on piazza (sorry!)


http://cseweb.ucsd.edu/classes/wi21/cse203B-a/

Overview

Convex sets
Convex separation
Convex functions
Conjugate function

Lagrangian Dual

vVvyvyVvVvyy

Logistics and other recommended topics



Convex sets: definition
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> Aset S C R is convex if the line segment between any two
points in C lies in C: for any x;,x0 € Cand 0 <60 <1,
9X1(1 — 9)X2 e C

» Example: the polytope K = {x|Ax < b} for x, b € RY,
A E Rmxn



Supporting Hyperplane Theorem

A supporting hyperplane to a set C is defined with respect to a
boundary point xq:
{x|]a"x = a"xo}

where 2 # 0 and a’x < a'xq for all x € C.

Supporting hyperplane theorem: If C is convex, then there exists a
supporting hyperplane at every boundary point of C.



Separating Hyperplane Theorem
If C and D are nonempty disjoint convex sets, there exists a # 0
s.t.
aTxgbforxeC, alx>bforxeD

The hyperplane {x|a”x = b} separates C and D.
Strict separation requires additional assumptions (e.g. C is closed,
D is a singleton).



Convex functions: definition
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» A function f : R"” — R is convex if domf is a convex set and
if for all x,y € domf and 0 <0 <1

f(0x+ (1 —0)y) <0f(x)+ (1 —0)f(y) Jensen’s inequality

» Concave functions: —f is convex
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Convex functions: first order condition

//f(m) +Vf(z)T(y—2)
\\\\\\\; — 7,,7':,,;'7/»/.(1" f<1‘))

» If f is differentiable (domf is open, Vf exists Vx € domf)
then f is convex iff domf is convex and for all x,y € dom f

fly) > f(x) + VF(x)"(y — x)



Convex functions: second order condition

» Suppose f is twice-differentiable (domf is open and its
Hessian exists Vx € domf) then f is convex iff domf domf is
convex and for all x,y € dom f

V2f =0 (positive semidefinite)



Convex functions: establishing convexity

By definition

>
>

Show by definition or first-order condition
For twice-differentiable functions, show V2f = 0

By convexity-preserving operations

>

vVvyYyyVvyy

Nonnegative weighted sum
Composition with affine function
Pointwise maximum and supremum
Composition

Minimization

Perspective
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Convex functions: relationship with convex sets

> A function is convex iff its epigraph is a convex set

» Consider a convex function f and x,y € domf
t > f(y) > f(x) + V() (y = x)
» The hyperplane supports epif at x, f(x), for any

y, t € epif
— V)T (y—x)+f(x)—t<0



Convex functions: examples

powers of absolute value
f = |x|P is convex on R+ + and p > 1

Pf: Note that the composition of a convex and convex-increasing
function is convex. Prove | -| is convex and xP is convex and
increasing.

TODO: Show log-convex function is convex (g(x) = log(f(x)), s.t.
f convex. (first show for f twice-differentiable))



Convex functions: examples

quadratic form of inverse
f:R"x S" >R, f(x,Y)=x"Y 1x is convex on R" x ST

Pf: Show epigraph of f is a convex set. Express epigraph as an
LMI and apply the definiteness conditions of the Schur
Complement (appendix 5.5).



Conjugate function
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» Given a function f : R" — R, the conjugate function

F(x) =

sup y ' x — f(x)
xedomf

> domf™* consists of y € domf such that sup,cqomry ' x — f(X)
is bounded.

» *(x) is convex even if f(x) is not convex



Pointwise supremum

» If for each y € U f(x,y) is convex in x, then

g(x) = sup f(x,y)
xeU

is convex in x.
> Example: £*(x) = supyecqomsy ' X — F(x)
» Example: First order condition for convex functions



Duality

Primal problem

min fy(x)
fi(x) <0
h;(X) =0

Lagrange dual function g : R” x R? — R

g\ v) lerg) L(x, A\, v)

= Xlng (fb(X) -+ i /\,f;(X) + zp: V,'h,'(X))
i=1

i=1



Duality

Lagrange dual function g : R™ x R? — R
g(A,v) = inf L(x,A,v)

- xlng (fO(X) + i )\,'f,'(X) + i I/,'h,'(X)>

i=1 i=1

g is concave, can be unbounded for some —\, v.

Lower bound property
If A >0, then g(\,v) < p*.
proof: if x is feasible and A > 0 then

fo(x) > L(x,\,v) > inif) L(x,\,v)=g(\ V)
x€

minimizing over all feasible x gives p* > g(\,v).



Duality

Lagrange dual function g : R™ x R? — R
g\ v) = inf L(x,,v)

— xlng (fo(x) + i_": Aifi(x) + z_p: 1/,-h,-(x)>

g is concave, can be unbounded for some —\, v.

Lower bound property
If A >0, then g(\,v) < p*.
proof: if x is feasible and A > 0 then

fo(x) > L(x,\,v) > inf L(x,\,v)=g(\ V)

xeD

minimizing over all feasible x gives p* > g(\,v).



Duality example: Primal and Dual of an LP

minc’ x
X

st. Ax <0

» The feasible set is the polytope K = {x|Ax < b}
» The Lagrange dual function of the primal problem is
0 ATA+c=0,A>0

—oo otherwise

g(\) = igf(cTX + M\AXx) = {

» The dual problem is
max 0
st. ATA+c=0
A>0
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Duality example: Primal and Dual of an LP
mXin c'x

s.t. Ax <0

» The feasible set is the polytope K = {x|Ax < b}
» The Lagrange dual function of the primal problem is
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x —oo otherwise
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Duality example: Primal and Dual of an LP

minc’ x
X

s.t. Ax <0

» The feasible set is the polytope K = {x|Ax < b}
» The Lagrange dual function of the primal problem is

0 ATA4+c=0,A>0

g(\) = inf(cTx 4+ M\Ax) = { _
x —oo otherwise

» The dual problem is

max 0
st. ATA+c=0
A>0

» Farkas lemma: Ax <0, c™x < 0 where Ac R™*" ¢ e R"
is satisfied for some x iff AA = ¢ s.t. A > 0 has no solution.



Saddle point interpretation

» Max-min inequality for any f:
sup,czinfuew f(w, z) <infyew sup,ez f(w, z)

» Now, consider the optimal values of the primal and dual
problems:

p* =infsup L(x,\) > supinf L(x, \)
X A>0 A>0 X



Other

Definitions and examples

Duality

Classification of convex problems: LP, GP, SOCP, QCQP, etc.
CVXPY & Python
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