Midterm Review for CSE 203B

Chester Holtz

Based on slides by Fangchen Liu & Prof. Stephen Boyd

Logistics

Released on course website: http://cseweb.ucsd.edu/classes/wi21/cse203B-a/

- Full 48 hours, submission on gradescope
- Released Tuesday 2/16 10:00 am PST, due Thursday 2/18 10:00 am PST
- 2 sections:
 - \blacktriangleright ~ 10 True/False (with explanation)
 - \sim 5 Derivations/simple proofs
 - At least one programming question
 - \blacktriangleright \sim 70% based on homework questions
- No questions will be answered on piazza (sorry!)

Overview

- Convex sets
- Convex separation
- Convex functions
- Conjugate function
- Lagrangian Dual
- Logistics and other recommended topics

Convex sets: definition

A set S ⊆ ℝ^d is convex if the line segment between any two points in C lies in C: for any x₁, x₂ ∈ C and 0 ≤ θ ≤ 1, θx₁(1 − θ)x₂ ∈ C

► Example: the polytope $\mathcal{K} = \{x | Ax \leq b\}$ for $x, b \in \mathbb{R}^d$, $A \in \mathbb{R}^{m \times n}$

Supporting Hyperplane Theorem

A supporting hyperplane to a set C is defined with respect to a boundary point x_0 :

$$\{x|a^{\mathsf{T}}x=a^{\mathsf{T}}x_0\}$$

where $a \neq 0$ and $a^T x \leq a^T x_0$ for all $x \in C$.

Supporting hyperplane theorem: If C is convex, then there exists a supporting hyperplane at every boundary point of C.

Separating Hyperplane Theorem

If C and D are nonempty disjoint convex sets, there exists $a \neq 0$ s.t.

$$a^T x \leq b \text{ for } x \in C, \quad a^T x \geq b \text{ for } x \in D$$

The hyperplane $\{x | a^T x = b\}$ separates *C* and *D*. Strict separation requires additional assumptions (e.g. *C* is closed, *D* is a singleton).

Convex functions: definition

A function f : ℝⁿ → ℝ is convex if domf is a convex set and if for all x, y ∈ domf and 0 ≤ θ ≤ 1

 $f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y)$ Jensen's inequality

Convex functions: definition

A function f : ℝⁿ → ℝ is convex if domf is a convex set and if for all x, y ∈ domf and 0 ≤ θ ≤ 1

 $f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y)$ Jensen's inequality

Convex functions: first order condition

If f is differentiable (domf is open, ∇f exists ∀x ∈ domf) then f is convex iff domf is convex and for all x, y ∈ dom f

$$f(y) \ge f(x) + \nabla f(x)^{T}(y-x)$$

Convex functions: second order condition

Suppose f is twice-differentiable (domf is open and its Hessian exists ∀x ∈ domf) then f is convex iff domf domf is convex and for all x, y ∈ dom f

 $\nabla^2 f \geq 0$ (positive semidefinite)

Convex functions: establishing convexity

By definition

- Show by definition or first-order condition
- ► For twice-differentiable functions, show $\nabla^2 f \succeq 0$

By convexity-preserving operations

- Nonnegative weighted sum
- Composition with affine function
- Pointwise maximum and supremum
- Composition
- Minimization
- Perspective

Convex functions: establishing convexity

By definition

- Show by definition or first-order condition
- ► For twice-differentiable functions, show $\nabla^2 f \succeq 0$

By convexity-preserving operations

- Nonnegative weighted sum
- Composition with affine function
- Pointwise maximum and supremum
- Composition
- Minimization
- Perspective

Convex functions: relationship with convex sets

• A function is convex iff its epigraph is a convex set

• Consider a convex function f and $x, y \in \text{dom} f$

$$t \ge f(y) \ge f(x) + \nabla f(x)^T (y - x)$$

• The hyperplane supports epif at x, f(x), for any

$$y, t \in \operatorname{epi} f$$

 $\implies \nabla f(x)^T (y - x) + f(x) - t \leq 0$

Convex functions: examples

powers of absolute value

 $f = |x|^p$ is convex on $\mathbb{R} + +$ and p > 1

Pf: Note that the composition of a convex and convex-increasing function is convex. Prove $|\cdot|$ is convex and x^p is convex and increasing.

TODO: Show log-convex function is convex (g(x) = log(f(x))), s.t. f convex. (first show for f twice-differentiable))

Convex functions: examples

quadratic form of inverse

 $f: \mathbb{R}^n \times S^n \to \mathbb{R}, f(x, Y) = x^T Y^{-1} x$ is convex on $\mathbb{R}^n \times S^n_{++}$

Pf: Show epigraph of f is a convex set. Express epigraph as an LMI and apply the definiteness conditions of the Schur Complement (appendix 5.5).

Conjugate function

• Given a function $f : \mathbb{R}^n \to \mathbb{R}$, the conjugate function

$$f^*(x) = \sup_{x \in \text{dom}f} y^T x - f(x)$$

• dom f^* consists of $y \in \text{dom} f$ such that $\sup_{y \in \text{dom} f} y^T x - f(x)$ is bounded.

• $f^*(x)$ is convex even if f(x) is not convex

▶ If for each $y \in U f(x, y)$ is convex in x, then

$$g(x) = \sup_{x \in U} f(x, y)$$

is convex in x.

- Example: $f^*(x) = \sup_{x \in \text{dom} f} y^T x f(x)$
- Example: First order condition for convex functions

Duality

Primal problem

 $\min f_0(x)$ $f_i(x) \le 0$ $h_i(x) = 0$

Lagrange dual function $g: \mathbb{R}^m \times \mathbb{R}^p \to \mathbb{R}$

$$g(\lambda,\nu) = \inf_{x \in \mathcal{D}} L(x,\lambda,\nu)$$
$$= \inf_{x \in \mathcal{D}} \left(f_0(x) + \sum_{i=1}^m \lambda_i f_i(x) + \sum_{i=1}^p \nu_i h_i(x) \right)$$

Duality

Lagrange dual function $g: \mathbb{R}^m \times \mathbb{R}^p \to \mathbb{R}$

$$g(\lambda,\nu) = \inf_{x \in \mathcal{D}} L(x,\lambda,\nu)$$
$$= \inf_{x \in \mathcal{D}} \left(f_0(x) + \sum_{i=1}^m \lambda_i f_i(x) + \sum_{i=1}^p \nu_i h_i(x) \right)$$

g is concave, can be unbounded for some $-\lambda$, ν .

Lower bound property If $\lambda \ge 0$, then $g(\lambda, \nu) \le p^*$. proof: if \bar{x} is feasible and $\lambda \ge 0$ then

$$f_0(\bar{x}) \ge L(\bar{x}, \lambda, \nu) \ge \inf_{x \in \mathcal{D}} L(\bar{x}, \lambda, \nu) = g(\lambda, \nu)$$

minimizing over all feasible \bar{x} gives $p^* \ge g(\lambda, \nu)$.

Duality

Lagrange dual function $g: \mathbb{R}^m \times \mathbb{R}^p \to \mathbb{R}$

$$g(\lambda,\nu) = \inf_{x \in \mathcal{D}} L(x,\lambda,\nu)$$
$$= \inf_{x \in \mathcal{D}} \left(f_0(x) + \sum_{i=1}^m \lambda_i f_i(x) + \sum_{i=1}^p \nu_i h_i(x) \right)$$

g is concave, can be unbounded for some $-\lambda$, ν .

Lower bound property

If $\lambda \ge 0$, then $g(\lambda, \nu) \le p^*$. proof: if \bar{x} is feasible and $\lambda \ge 0$ then

$$f_0(\bar{x}) \geq L(\bar{x},\lambda,
u) \geq \inf_{x\in\mathcal{D}} L(\bar{x},\lambda,
u) = g(\lambda,
u)$$

minimizing over all feasible \bar{x} gives $p^* \ge g(\lambda, \nu)$.

$$\min_{x} c^{T} x$$
s.t. $Ax \leq 0$

- The feasible set is the polytope $K = \{x | Ax \le b\}$
- The Lagrange dual function of the primal problem is

$$g(\lambda) = \inf_{x} (c^{T}x + \lambda Ax) = \begin{cases} 0 & A^{T}\lambda + c = 0, \lambda \ge 0 \\ -\infty & \text{otherwise} \end{cases}$$

The dual problem is

 $\begin{array}{ll} \max & 0 \\ \text{s.t.} & A^T \lambda + c = 0 \\ & \lambda \geq 0 \end{array}$

$$\min_{x} c^{T} x$$
s.t. $Ax \leq 0$

▶ The feasible set is the polytope K = {x | Ax ≤ b}
 ▶ The Lagrange dual function of the primal problem is

$$g(\lambda) = \inf_{x} (c^{\mathsf{T}}x + \lambda Ax) = egin{cases} 0 & A^{\mathsf{T}}\lambda + c = 0, \lambda \geq 0 \ -\infty & ext{otherwise} \end{cases}$$

The dual problem is

 $\begin{array}{ll} \max & 0 \\ \text{s.t.} & A^T \lambda + c = 0 \\ & \lambda \geq 0 \end{array}$

$$\min_{x} c^{T} x$$
s.t. $Ax \leq 0$

- The feasible set is the polytope $K = \{x | Ax \le b\}$
- The Lagrange dual function of the primal problem is

$$g(\lambda) = \inf_x (c^T x + \lambda A x) = egin{cases} 0 & A^T \lambda + c = 0, \lambda \geq 0 \ -\infty & ext{otherwise} \end{cases}$$

The dual problem is

$$\begin{array}{l} \max \ 0 \\ \text{s.t.} \quad A^T \lambda + c = 0 \\ \lambda \ge 0 \end{array}$$

$$\min_{x} c^{T} x$$
s.t. $Ax \leq 0$

- The feasible set is the polytope $K = \{x | Ax \le b\}$
- The Lagrange dual function of the primal problem is

$$g(\lambda) = \inf_x (c^{\mathsf{T}} x + \lambda A x) = egin{cases} 0 & A^{\mathsf{T}} \lambda + c = 0, \lambda \geq 0 \ -\infty & ext{otherwise} \end{cases}$$

The dual problem is

$$\begin{array}{ll} \max & 0 \\ \text{s.t.} & \boldsymbol{A}^{T}\boldsymbol{\lambda} + \boldsymbol{c} = 0 \\ & \boldsymbol{\lambda} \geq 0 \end{array}$$

$$\min_{x} c^{T} x$$
s.t. $Ax \leq 0$

- The feasible set is the polytope $K = \{x | Ax \le b\}$
- The Lagrange dual function of the primal problem is

$$g(\lambda) = \inf_x (c^T x + \lambda A x) = egin{cases} 0 & A^T \lambda + c = 0, \lambda \geq 0 \ -\infty & ext{otherwise} \end{cases}$$

The dual problem is

 $\begin{array}{ll} \max & 0 \\ \text{s.t.} & \boldsymbol{A}^{T}\boldsymbol{\lambda} + \boldsymbol{c} = 0 \\ & \boldsymbol{\lambda} \geq 0 \end{array}$

► Farkas lemma: $Ax \le 0$, $c^T x < 0$ where $A \in \mathbb{R}^{m \times n}$, $c \in \mathbb{R}^n$ is satisfied for some x iff $A\lambda = c$ s.t. $\lambda \ge 0$ has no solution.

Saddle point interpretation

- ► Max-min inequality for any f: sup_{z∈Z} inf_{w∈W} f(w, z) ≤ inf_{w∈W} sup_{z∈Z} f(w, z)
- Now, consider the optimal values of the primal and dual problems:

$$p^* = \inf_x \sup_{\lambda \ge 0} L(x,\lambda) \ge \sup_{\lambda \ge 0} \inf_x L(x,\lambda)$$

Other

- Definitions and examples
- Duality
- Classification of convex problems: LP, GP, SOCP, QCQP, etc.
- CVXPY & Python