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Midterm Review for CSE 203B

Chester Holtz

Based on slides by Fangchen Liu
& Prof. Stephen Boyd



2/27

Logistics

I Released on course website:
http://cseweb.ucsd.edu/classes/wi21/cse203B-a/

I Full 48 hours, submission on gradescope
I Released Tuesday 2/16 10:00 am PST, due Thursday 2/18

10:00 am PST
I 2 sections:

I ∼ 10 True/False (with explanation)
I ∼ 5 Derivations/simple proofs
I At least one programming question
I ∼ 70% based on homework questions

I No questions will be answered on piazza (sorry!)

http://cseweb.ucsd.edu/classes/wi21/cse203B-a/
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Overview

I Convex sets
I Convex separation
I Convex functions
I Conjugate function
I Lagrangian Dual
I Logistics and other recommended topics
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Convex sets: definition

I A set S ⊆ Rd is convex if the line segment between any two
points in C lies in C : for any x1, x2 ∈ C and 0 ≤ θ ≤ 1,
θx1(1− θ)x2 ∈ C

I Example: the polytope K = {x |Ax ≤ b} for x , b ∈ Rd ,
A ∈ Rm×n
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Supporting Hyperplane Theorem
A supporting hyperplane to a set C is defined with respect to a
boundary point x0:

{x |aT x = aT x0}

where a 6= 0 and aT x ≤ aT x0 for all x ∈ C .

Supporting hyperplane theorem: If C is convex, then there exists a
supporting hyperplane at every boundary point of C .
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Separating Hyperplane Theorem
If C and D are nonempty disjoint convex sets, there exists a 6= 0
s.t.

aT x ≤ b for x ∈ C , aT x ≥ b for x ∈ D

The hyperplane {x |aT x = b} separates C and D.
Strict separation requires additional assumptions (e.g. C is closed,
D is a singleton).
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Convex functions: definition

I A function f : Rn → R is convex if domf is a convex set and
if for all x , y ∈ domf and 0 ≤ θ ≤ 1

f (θx + (1− θ)y) ≤ θf (x) + (1− θ)f (y) Jensen’s inequality

I Concave functions: −f is convex
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Convex functions: first order condition

I If f is differentiable (domf is open, ∇f exists ∀x ∈ domf )
then f is convex iff domf is convex and for all x , y ∈ dom f

f (y) ≥ f (x) +∇f (x)T (y − x)
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Convex functions: second order condition

I Suppose f is twice-differentiable (domf is open and its
Hessian exists ∀x ∈ domf ) then f is convex iff domf domf is
convex and for all x , y ∈ dom f

∇2f < 0 (positive semidefinite)
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Convex functions: establishing convexity

By definition
I Show by definition or first-order condition
I For twice-differentiable functions, show ∇2f < 0

By convexity-preserving operations
I Nonnegative weighted sum
I Composition with affine function
I Pointwise maximum and supremum
I Composition
I Minimization
I Perspective
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Convex functions: relationship with convex sets

I A function is convex iff its epigraph is a convex set
I Consider a convex function f and x , y ∈ domf

t ≥ f (y) ≥ f (x) +∇f (x)T (y − x)

I The hyperplane supports epif at x , f (x), for any

y , t ∈ epif
=⇒ ∇f (x)T (y − x) + f (x)− t ≤ 0
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Convex functions: examples

powers of absolute value
f = |x |p is convex on R + + and p > 1

Pf: Note that the composition of a convex and convex-increasing
function is convex. Prove | · | is convex and xp is convex and
increasing.

TODO: Show log-convex function is convex (g(x) = log(f (x)), s.t.
f convex. (first show for f twice-differentiable))
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Convex functions: examples

quadratic form of inverse
f : Rn × Sn → R, f (x ,Y ) = xT Y−1x is convex on Rn × Sn

++

Pf: Show epigraph of f is a convex set. Express epigraph as an
LMI and apply the definiteness conditions of the Schur
Complement (appendix 5.5).
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Conjugate function

I Given a function f : Rn → R, the conjugate function

f ∗(x) = sup
x∈domf

yT x − f (x)

I domf ∗ consists of y ∈ domf such that supy∈domf yT x − f (x)
is bounded.

I f ∗(x) is convex even if f (x) is not convex
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Pointwise supremum

I If for each y ∈ U f (x , y) is convex in x , then

g(x) = sup
x∈U

f (x , y)

is convex in x .
I Example: f ∗(x) = supx∈domf yT x − f (x)
I Example: First order condition for convex functions
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Duality

Primal problem

min f0(x)
fi (x) ≤ 0
hi (x) = 0

Lagrange dual function g : Rm × Rp → R

g(λ, ν) = inf
x∈D

L(x , λ, ν)

= inf
x∈D

(
f0(x) +

m∑
i=1

λi fi (x) +
p∑

i=1
νihi (x)

)
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Duality

Lagrange dual function g : Rm × Rp → R

g(λ, ν) = inf
x∈D

L(x , λ, ν)

= inf
x∈D

(
f0(x) +

m∑
i=1

λi fi (x) +
p∑

i=1
νihi (x)

)

g is concave, can be unbounded for some −λ, ν.

Lower bound property
If λ ≥ 0, then g(λ, ν) ≤ p∗.
proof: if x̄ is feasible and λ ≥ 0 then

f0(x̄) ≥ L(x̄ , λ, ν) ≥ inf
x∈D

L(x̄ , λ, ν) = g(λ, ν)

minimizing over all feasible x̄ gives p∗ ≥ g(λ, ν).
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Duality example: Primal and Dual of an LP

min
x

cT x

s.t. Ax ≤ 0

I The feasible set is the polytope K = {x |Ax ≤ b}
I The Lagrange dual function of the primal problem is

g(λ) = inf
x

(cT x + λAx) =
{

0 ATλ+ c = 0, λ ≥ 0
−∞ otherwise

I The dual problem is

max 0
s.t. ATλ+ c = 0

λ ≥ 0
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Duality example: Primal and Dual of an LP

min
x

cT x

s.t. Ax ≤ 0

I The feasible set is the polytope K = {x |Ax ≤ b}
I The Lagrange dual function of the primal problem is

g(λ) = inf
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(cT x + λAx) =
{
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s.t. ATλ+ c = 0
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I Farkas lemma: Ax ≤ 0, cT x < 0 where A ∈ Rm×n, c ∈ Rn

is satisfied for some x iff Aλ = c s.t. λ ≥ 0 has no solution.
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Saddle point interpretation

I Max-min inequality for any f :
supz∈Z infw∈W f (w , z) ≤ infw∈W supz∈Z f (w , z)

I Now, consider the optimal values of the primal and dual
problems:

p∗ = inf
x

sup
λ≥0

L(x , λ) ≥ sup
λ≥0

inf
x

L(x , λ)
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Other

I Definitions and examples
I Duality
I Classification of convex problems: LP, GP, SOCP, QCQP, etc.
I CVXPY & Python
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