CSE203B - Discussion Session

Po-Ya Hsu
01/29/21

Outline

- Convex functions
- Definition
- First-order conditions
- Second-order conditions
- Operations that preserve convexity
- Conjugate functions
- Quasi-convex functions
- Assignment Hints

Definition of Convex Functions

- A function $f: R^{n} \rightarrow R$ is convex if $\operatorname{dom} f$ is a convex set and if for all $x, y \in \operatorname{dom} f$, and $0 \leq \theta \leq 1$, we have

$$
f(\theta x+(1-\theta) y) \leq \theta f(x)+(1-\theta) f(y)
$$

- Concave functions: $-f$ is convex

First-order Conditions

- Suppose f is differentiable ($\operatorname{dom} f$ is open and ∇f exists at each point in $\operatorname{dom} f$), then f is convex iff dom f is convex and for all $x, y \in \operatorname{dom} f$

$$
f(y) \geq f(x)+\nabla f(x)^{T}(y-x)
$$

- Strict convexity: $f(y)>f(x)+\nabla f(x)^{T}(y-x), x \neq y$
- Concave functions: $f(y) \leq f(x)+\nabla f(x)^{T}(y-x)$

Second Order Condition

- Suppose f is twice differentiable (dom f is open and its Hessian exists at each point in $\operatorname{dom} f$), then f is convex iff $\operatorname{dom} f$ is convex and for all $x, y \in \operatorname{dom} f$

$$
\nabla^{2} f(x) \succcurlyeq 0 \text { (the Hessian is positive semidefinite) }
$$

- Strict convexity: $\nabla^{2} f(x)>0$
- Concave functions: $\nabla^{2} f(x) \leqslant 0$

Example of Convex Functions

- Quadratic over linear function

$$
f(x, y)=\frac{x^{2}}{y}, \text { for } y>0
$$

Its gradient $\nabla f(x)=\left[\begin{array}{c}\frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y}\end{array}\right]=\left[\begin{array}{c}\frac{2 x}{y} \\ \frac{-x^{2}}{y^{2}}\end{array}\right]$
Hessian $\nabla^{2} f(x)=\left[\begin{array}{cc}\frac{\partial^{2} f}{\partial x^{2}} & \frac{\partial^{2} f}{\partial x \partial y} \\ \frac{\partial^{2} f}{\partial y \partial x} & \frac{\partial^{2} f}{\partial y^{2}}\end{array}\right]=\frac{2}{y^{3}}\left[\begin{array}{cc}y^{2} & -x y \\ -x y & x^{2}\end{array}\right] \succcurlyeq 0 \Rightarrow$ convex
Positive semidefinite? $\left[\begin{array}{c}y \\ -x\end{array}\right]\left[\begin{array}{c}y \\ -x\end{array}\right]^{T}$, for any $u \in R^{2}, u^{T}\left(v v^{T}\right) u=\left(v^{T} u\right)^{T}\left(v^{T} u\right)=$ $\left\|v^{T} u\right\|_{2}^{2} \geq 0$.

Epigraph

- α-sublevel set of $f: R^{n} \rightarrow R$

$$
C_{\alpha}=\{x \in \operatorname{dom} f \mid f(x) \leq \alpha\}
$$

sublevel sets of a convex function are convex for any value of α.

- Epigraph of $f: R^{n} \rightarrow R$ is defined as

$$
\text { epi } f=\{(x, t) \mid x \in \operatorname{dom} f, f(x) \leq t\} \subseteq R^{n+1}
$$

epi f

Link between convex sets and convex functions

- A function is convex iff its epigraph is a convex set.
- Consider a convex function f and $x, y \in \operatorname{dom} f$

$$
t \geq \geq_{1}^{\prime} f(y) \geq f(x)+\nabla f(x)^{T}(y-x)
$$

epi f
First order condition for convexity

- The hyperplane supports epi f at $(x, f(x))$, for any

$$
\begin{gathered}
(y, t) \in \mathbf{e p i} f \Rightarrow \\
\nabla f(x)^{T}(y-x)+f(x)-t \leq 0 \\
\Rightarrow\left[\begin{array}{c}
\nabla f(x) \\
-1
\end{array}\right]^{T}\left(\left[\begin{array}{l}
y \\
t
\end{array}\right]-\left[\begin{array}{c}
x \\
f(x)
\end{array}\right]\right) \leq 0
\end{gathered}
$$

Operations that preserve convexity

Practical methods for establishing convexity of a function

- Verify definition (often simplified by restricting to a line)
- For twice differentiable functions, show $\nabla^{2} f(x) \geqslant 0$
- Show that f is obtained from simple convex functions by operations that preserve convexity (Ref. Chap. 3.2)
- Nonnegative weighted sum
- Composition with affine function
- Pointwise maximum and supremum
- Composition
- Minimization
- Perspective

Conjugate Function

- Given function $f: R^{n} \rightarrow R$, the conjugate function

$$
f^{*}(y)=\sup _{x \in \operatorname{dom} f} y^{T} x-f(x)
$$

- The $\operatorname{dom} f^{*}$ consists $y \in R^{n}$ for which $\sup _{x \in \operatorname{dom} f} y^{T} x-f(x)$ is bounded

Theorem: $f^{*}(y)$ is convex even $f(x)$ is not convex. (Proof with pointwise supremum) $y^{T} x-f(x)$ is affine function in y

Examples of Conjugates

- Derive the conjugates of $f: R \rightarrow R$

$$
f^{*}(y)=\sup _{x \in \operatorname{dom} f} y x-f(x)
$$

Affine

Norm

See more examples in chap 3.3.1

Quasi-convex Functions

- A function $f: R^{n} \rightarrow R$ is quasi-convex if its domain and all its sublevel sets

$$
S_{\alpha}=\{x \in \operatorname{dom} f \mid f(x) \leq \alpha\}, \alpha \in \mathcal{R}
$$

are convex.

- Another way to define a quasi-convex function: a function $f: S \rightarrow \mathcal{R}$ defined on a convex subset S is quasi-convex if for all $x, y \in S, 0 \leq$ $\lambda \leq 1$, we have
- $f(\lambda x+(1-\lambda) y) \leq \max \{f(x), f(y)\}$

Examples

Quasi-convex

Not Quasi-convex

Assignment - Entropy

-1) Feel comfortable to use any properties of a convex function.
-2) Use the definition of the conjugate function directly. You should arrive at the result similar to sum of exponentials.

Assignment - KL Divergence

-1) Use the definition of $K L$ divergence (e.g., for $K L(p, q)$ sum $p_{i} \log \left(p_{i} /\right.$ q_{i}) for the six events)

- 2) Plug in the number from the table directly.
-3) Give two examples. One for $P=Q$; the other for $P \neq Q$

Assignment - Piecewise Conjugate Function

- Discuss each region
- Your answer should include both bounded and unbounded cases in the expression of y

Assignment - Dual Norm

- $\max \left(x^{T} y\right)=\max \left(\frac{x^{T} y}{\|y\|_{p}}\right)$
- Try to solve $\nabla_{y} \max \left(\frac{x^{T} y}{\|y\|_{p}}\right)=0$

