CSEZ203B - Discussion Session

Po-Ya Hsu
01/29/21



Outline

* Convex functions
* Definition
* First-order conditions
* Second-order conditions
e Operations that preserve convexity

e Conjugate functions
* Quasi-convex functions
* Assignment Hints



Definition of Convex Functions

* A function f: R™ — R is convex if dom f is a convex set and if for all
x,y €dom f,and 0 < 0 <1, we have

fOx+(1=0)y) <0f(x)+(1-0)f(y)

* Concave functions: —f is convex

T (Ox+ (1 -0)y.flex+(1-0)y))



First-order Conditions

* Suppose f is differentiable (dom f is open and Vf exists at each point in
dom f), then f is convex iff dom f is convex and for all x,y € dom f

fO) = f)+ V)" (v —x)
e Strict convexity: f(y) > f(x) + V()T (y —x),x £y
e Concave functions: f(y) < f(x) + V()" (y — x)




Second Order Condition

* Suppose f is twice differentiable (dom f is open and its Hessian
exists at each point in dom f), then f is convex iff dom f is convex
and forall x,y € dom f

V2f(x) = 0 (the Hessian is positive semidefinite)
e Strict convexity:V%f(x) > 0

e Concave functions: V%f(x) < 0



Example of Convex Functions

e (Quadratic over linear function
2

X
flx,y) =7,fory > 0

of 2x
. ox y
Its gradient Vf(x) = ar| = |2
oyl [yz]
2 9 ,
, 2 _ | 9x* oxoy|_ 21 —XYy o
Hessian V< f(x) = o2r  o2p | =53 [—xy 2|7 0 = convex
|dydx  0y? |
1T
Positive semidefinite? [—yx] [—yx ,foranyu € R%, ul (vvh)u = (whuw)" (v'u) =

||vTu||z > 0.



Epigraph
* a-sublevel set of f: R™ - R
C,={x€domf]|f(x) < a}
sublevel sets of a convex function are convex for any value of «a.

* Epigraph of f: R™ — R is defined as
epi f = {(x,t)|x edom f,f(x) <t} € R*"!

epi f



Link between convex sets and convex functions

* A function is convex iff its epigraph is a convex set.

* The hyperplane supports epi f at (x, f(x)), for any T t

(y,t) Eepif =
Vi)' (y—x)+f(x) -t <0

(1] (B [ro]) =0




Operations that preserve convexity

* Verify definition ( often simplified by restricting to a line)
* For twice differentiable functions, show V2f(x) = 0

* Show that f is obtained from simple convex functions by operations
that preserve convexity (Ref. Chap. 3.2)
* Nonnegative weighted sum
* Composition with affine function
Pointwise maximum and supremum
Composition
Minimization
Perspective



Conjugate Function

* Given function f: R"™ = R, the conjugate function

f*@)= sup y'x —f(x)
xedom f
* The dom f* consists y € R™ for which sup yTx — f(x) is bounded
fz) xedom f

//Iy
. Supporting hyperplane: if f is convex in that domain
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) (f,f(f)) where VfT (%) = y if f is differentiable

Theorem: f*(y) is convex even f(x) is not convex.



Examples of Conjugates

* Derive the conjugatesof f:R —- R

Afflne Af(af:) =ar —f3

1

R

ffy) = sup yx — f(x)
xedom f
() :f{fo gi#z = (c/2)x ff (y) = (1/2c)y?
0 o 37 0 ;
quadratlc
R FTE

See more examples in chap 3.3.1



Quasi-convex Functions

* A function f: R™ — R is quasi-convex if its domain and all its sublevel
sets

Sy ={xedomf|f(x)<al,aeR
are convex.

* Another way to define a quasi-convex function: a function f: S - R
defined on a convex subset S is quasi-convex if forall x,y € 5,0 <
A <1, we have



Examples

s f(x)

—{

s f(x)

Quasi-convex

Not Quasi-convex

13



Assignment - Entropy

* 1) Feel comfortable to use any properties of a convex function.

 2) Use the definition of the conjugate function directly. You should
arrive at the result similar to sum of exponentials.



Assignment — KL Divergence

* 1) Use the definition of KL divergence (e.g., for KL(p,q) sum p;log(p;/
q;) for the six events)

e 2) Plug in the number from the table directly.
 3) Give two examples. One for P=Q; the other for P #Q,



Assignment — Piecewise Conjugate Function

 Discuss each region

* Your answer should include both bounded and unbounded cases in
the expression of y



Assignment — Dual Norm

xTy)
Hyllp

* max(x’y) = max(

xTy
* Try to solve V,, max =0
[4]



