Math Foundations: Review for CSE 203B

Chester Holtz

chholtz@eng.ucsd.edu
OH: Fri 6:30-7:30 pm

Overview

- Notations \& general assumptions
- Vector norms, inner products
- Linear spaces, subspaces, linear transformations
- Eigenvalues / eigenvectors, rank, SVD, inverse
- Matrix norms
- Matrix and vector differential

Notations \& basic assumptions

- Greek alphabet α, β, γ denote real numbers
- Small letters x, y, z denote vectors
- Capital letters denote matrices A, B, C

Notations \& basic assumptions

- Greek alphabet α, β, γ denote real numbers
- Small letters x, y, z denote vectors
- Capital letters denote matrices A, B, C
- \mathbb{R} is the one dimensional Euclidean space
- \mathbb{R}^{n} is the n-dimensional vector Euclidean space
- $\mathbb{R}^{m \times n}$ is the $m \times n$ dimensional matrix Euclidean space
$-\mathbb{R}_{+}$denotes the range $[0,+\infty), \mathbb{R}_{++}$denotes the range $(0, \infty)$
- $1_{n} \in \mathbb{R}^{n}$ denotes a vector with 1 in all entries
- For any vector $x \in \mathbb{R}^{n},|x|_{i}=|x|_{i} \quad \forall i=1, \ldots, n$

Vector norms, Inner product

A function $f: x \in \mathbb{R}^{n} \rightarrow y \in \mathbb{R}_{+}$is called a norm if the following conditions are satisfied:

1. (zero element) $f(x) \geq 0$ and $f(x)=0$ iff $x=0$

Vector norms, Inner product

A function $f: x \in \mathbb{R}^{n} \rightarrow y \in \mathbb{R}_{+}$is called a norm if the following conditions are satisfied:

1. (zero element) $f(x) \geq 0$ and $f(x)=0$ iff $x=0$
2. (Homogeneity) For any $\alpha \in \mathbb{R}$ and $x \in \mathbb{R}^{n}, f(\alpha x)=|\alpha| f(x)$

Vector norms, Inner product

A function $f: x \in \mathbb{R}^{n} \rightarrow y \in \mathbb{R}_{+}$is called a norm if the following conditions are satisfied:

1. (zero element) $f(x) \geq 0$ and $f(x)=0$ iff $x=0$
2. (Homogeneity) For any $\alpha \in \mathbb{R}$ and $x \in \mathbb{R}^{n}, f(\alpha x)=|\alpha| f(x)$
3. (Triangle inequality) $x, y \in \mathbb{R}^{n}$ satisfy $f(x)+f(y) \geq f(x+y)$

Vector norms, Inner product

```
1. (zero element)}f(x)\geq0\mathrm{ and }f(x)=0\mathrm{ iff }x=
2. (Homogeneity) For any }\alpha\in\mathbb{R}\mathrm{ and }x\in\mp@subsup{\mathbb{R}}{}{n},f(\alphax)=|\alpha|f(x
3. (Triangle inequality) }x,y\in\mp@subsup{\mathbb{R}}{}{n}\mathrm{ satisfy }f(x)+f(y)\geqf(x+y
```


Example

- ℓ_{1} norm " $\|\cdot\|_{1}$ " is defined as $\|x\|_{1}=\left(\left|x_{1}\right|+\left|x_{2}\right|+\ldots\left|x_{n}\right|\right)$
- ℓ_{2} norm " $\|\cdot\|_{2}$ " is defined as

$$
\|x\|_{2}=\left(\left|x_{1}\right|^{2}+\left|x_{2}\right|^{2}+\ldots\left|x_{n}\right|^{2}\right)^{\frac{1}{2}}
$$

Vector norms, Inner product

In general, an ℓ_{p} norm $(p \geq 1)$ is defined as

$$
\|x\|_{p}=\left(\left|x_{1}\right|^{p}+\left|x_{2}\right|^{p}+\ldots\left|x_{n}\right|^{p}\right)^{\frac{1}{p}}
$$

Note:

- for $p<1$, triangle inequality is violated.
$-\|x\|_{\infty}=\lim _{p \rightarrow+\infty}\|x\|_{p} \max \left\{\left|x_{1}\right|,\left|x_{2}\right|, \ldots,\left|x_{n}\right|\right\}$

Vector norms, Inner product

The inner product. $\langle\cdot, \cdot\rangle$ in \mathbb{R}^{n} is defined as

$$
\langle x, y\rangle=\sum_{i} x_{i} y_{i}
$$

Vector norms, Inner product

The inner product. $\langle\cdot, \cdot\rangle$ in \mathbb{R}^{n} is defined as

$$
\langle x, y\rangle=\sum_{i} x_{i} y_{i}
$$

Note that $\langle x, x\rangle=\|x\|^{2}$. Two vectors x and y are orthogonal if $\langle x, y\rangle=0$

Vector norms, Inner product

The inner product. $\langle\cdot, \cdot\rangle$ in \mathbb{R}^{n} is defined as

$$
\langle x, y\rangle=\sum_{i} x_{i} y_{i}
$$

Note that $\langle x, x\rangle=\|x\|^{2}$. Two vectors x and y are orthogonal if $\langle x, y\rangle=0$

Furthermore, if $p \geq q$, then for any $x \in \mathbb{R}^{n},\|x\|_{p} \leq\|x\|_{q}$. In particular,

$$
\|x\|_{1} \geq\|x\|_{2} \geq\|x\|_{\infty}
$$

Vector norms, Inner product

$$
\|x\|_{1} \leq \sqrt{n}\|x\|_{2} \quad\|x\|_{2} \leq \sqrt{n}\|x\|_{\infty}
$$

Proof

Vector norms, Inner product

$$
\|x\|_{1} \leq \sqrt{n}\|x\|_{2} \quad\|x\|_{2} \leq \sqrt{n}\|x\|_{\infty}
$$

Proof

$$
\|x\|_{1}=\left\langle 1_{n},\right| x| \rangle \leq\left\|1_{n}\right\|_{2} \mid\|x\|_{2}=\sqrt{n}\|x\|_{2}
$$

Cauchy Schwarz inequality:

$$
|\langle u, v\rangle|^{2} \leq\langle u, u\rangle\langle v, v\rangle
$$

or

$$
|\langle u, v\rangle| \leq\|u\|\|v\|
$$

Vector norms, Inner product

Given a norm $\|x\|_{A}$, its dual norm is defined as

$$
\|x\|_{A^{*}}=\max _{\|y\|_{A} \leq 1}\langle x, y\rangle=\max _{\|y\|_{A}=1}\langle x, y\rangle=\max _{z} \frac{\langle x, z\rangle}{\|z\|_{A}}
$$

Vector norms, Inner product

Given a norm $\|x\|_{A}$, its dual norm is defined as

$$
\|x\|_{A^{*}}=\max _{\|y\|_{A} \leq 1}\langle x, y\rangle=\max _{\|y\|_{A}=1}\langle x, y\rangle=\max _{z} \frac{\langle x, z\rangle}{\|z\|_{A}}
$$

- The dual norm's dual norm is itself. $\|x\|_{\left(A^{*}\right)^{*}}=\|x\|_{A}$

Vector norms, Inner product

Given a norm $\|x\|_{A}$, its dual norm is defined as

$$
\|x\|_{A^{*}}=\max _{\|y\|_{A} \leq 1}\langle x, y\rangle=\max _{\|y\|_{A}=1}\langle x, y\rangle=\max _{z} \frac{\langle x, z\rangle}{\|z\|_{A}}
$$

- The dual norm's dual norm is itself. $\|x\|_{\left(A^{*}\right)^{*}}=\|x\|_{A}$
- The ℓ_{2} norm is self-dual

Vector norms, Inner product

Given a norm $\|x\|_{A}$, its dual norm is defined as

$$
\|x\|_{A^{*}}=\max _{\|y\|_{A} \leq 1}\langle x, y\rangle=\max _{\|y\|_{A}=1}\langle x, y\rangle=\max _{z} \frac{\langle x, z\rangle}{\|z\|_{A}}
$$

- The dual norm's dual norm is itself. $\|x\|_{\left(A^{*}\right)^{*}}=\|x\|_{A}$
- The ℓ_{2} norm is self-dual
- In general, the dual norm of an ℓ_{p} norm is an ℓ_{q} norm where p, q satisfy $1 / p+1 / q=1$

Vector norms, Inner product

Given a norm $\|x\|_{A}$, its dual norm is defined as

$$
\|x\|_{A^{*}}=\max _{\|y\|_{A} \leq 1}\langle x, y\rangle=\max _{\|y\|_{A}=1}\langle x, y\rangle=\max _{z} \frac{\langle x, z\rangle}{\|z\|_{A}}
$$

- The dual norm's dual norm is itself. $\|x\|_{\left(A^{*}\right)^{*}}=\|x\|_{A}$
- The ℓ_{2} norm is self-dual
- In general, the dual norm of an ℓ_{p} norm is an ℓ_{q} norm where p, q satisfy $1 / p+1 / q=1$
- (Holder inequality): $\langle x, y\rangle \leq\|x\|_{A}\|y\|_{A^{*}}$

Linear space, subspace, linear transformation

A set S is a linear space if

- $0 \in S$
- given any two points $x, y \in S$ and scalars $\alpha, \beta \in \mathbb{R}$.

$$
\alpha x+\beta y \in S
$$

Linear space, subspace, linear transformation

- $0 \in S$
- given any two points $x, y \in S$ and scalars $\alpha, \beta \in \mathbb{R}, \alpha x+\beta y \in S$
examples
- \emptyset ?
- 0 ?
- $\{0\}$?
- $\{x \mid A x=b\}$?

Linear space, subspace, linear transformation

Let S be a linear space. A set S^{\prime} is a subspace if S^{\prime} is a linear space and also a subset of S.

Linear space, subspace, linear transformation

Let S be a linear space. A function $L(\cdot)$ is a linear transformation if given $x, y \in S$ and scalars $\alpha, \beta \in \mathbb{R}$,

$$
L(\alpha x+\beta y)=\alpha L(x)+\beta L(y)
$$

Note 1-1 correspondence between linear transformations and matrices.

Linear space, subspace, linear transformation

Expressing a subspace
A bunch of vectors. The range space of a matrix X :

$$
\operatorname{span}\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}=\left\{\sum_{i=1}^{n} \alpha_{i} x_{i} \mid \alpha_{i} \in \mathbb{R}\right\}=\{X \alpha \mid \alpha\}
$$

Linear space, subspace, linear transformation

Expressing a subspace
A bunch of vectors. The range space of a matrix X :

$$
\operatorname{span} x_{1}, x_{2}, \ldots, x_{n}=\left\{\sum_{i=1}^{n} \alpha_{i} x_{i} \mid \alpha_{i} \in \mathbb{R}\right\}=\{X \alpha \mid \alpha\}
$$

The null space of X :

$$
\{\alpha \mid X \alpha=0\}
$$

Eigenvalues / eigenvectors, rank, SVD, inverse

The transpose of a matrix $A \in \mathbb{R}^{m \times n}$ is defined as $A^{T} \in \mathbb{R}^{n \times n}$:

$$
\left(A^{T}\right)_{i j}=A_{j i}
$$

Eigenvalues / eigenvectors, rank, SVD, inverse

The transpose of a matrix $A \in \mathbb{R}^{m \times n}$ is defined as $A^{T} \in \mathbb{R}^{n \times n}$:

$$
\left(A^{T}\right)_{i j}=A_{j i}
$$

Can verify that

$$
(A B)^{T}=B^{T} A^{T}
$$

Eigenvalues / eigenvectors, rank, SVD, inverse

A matrix $B \in \mathbb{R}^{n \times n}$ is the inverse of an invertible matrix $A \in \mathbb{R}^{n \times n}$ if:

$$
A B=I \quad \text { and } \quad B A=I
$$

Note the following properties:

- $(A B)^{-1}=B^{-1} A^{-1}$
- $\left(A^{T}\right)^{-1}=\left(A^{-1}\right)^{T}$

Eigenvalues / eigenvectors, rank, SVD, inverse

Given a square matrix $A \in \mathbb{R}^{n \times n}, x \in \mathbb{R}^{n},(x \neq 0)$ is called its eigenvector and $\lambda \in \mathbb{R}$ is its associated eigenvalue if:

$$
A x=\lambda x
$$

Eigenvalues / eigenvectors, rank, SVD, inverse

Given a square matrix $A \in \mathbb{R}^{n \times n}, x \in \mathbb{R}^{n},(x \neq 0)$ is called its eigenvector and $\lambda \in \mathbb{R}$ is its associated eigenvalue if:

$$
A x=\lambda x
$$

Properties

- If the matrix A is symmetric, any two eigenvectors (corresponding to different eigenvalues) are orthogonal.
- $\operatorname{det} A=\prod i \lambda_{i}$
- The rank of A is equal to the number of non-zero eigenvalues.
- If A is invertible, $1 / \lambda_{i}$ is an eigenvalue of A^{-1}
- $\lambda_{\text {max }}=\sup _{x \neq 0} \frac{x^{\top} A x}{x^{\top} x}$

Eigenvalues / eigenvectors, rank, SVD, inverse

If $A^{T}=A, A x_{1}=\lambda_{1} x_{1}, A x_{2}=\lambda_{2} x_{2}$, and $\lambda_{1} \neq \lambda_{2}$, then $x_{1}^{T} x_{2}=0$ proof
Consider $X_{1}^{T} A x_{2}$. We have that

$$
x_{1}^{T} A x_{2}=x_{1}^{T}\left(A x_{2}\right)=x_{1}^{T}\left(\lambda_{2} x_{2}\right)=\lambda_{2} x_{1}^{T} x_{2}
$$

and

$$
x_{1}^{T} A x_{2}=\left(x_{1}^{T} A\right) x_{2}=\left(A^{T} x_{1}\right)^{T} x_{2}=\left(A x_{1}\right)^{T} x_{2}=\lambda_{1} x_{1}^{T} x_{2}
$$

So

$$
\lambda_{2} x_{1}^{T} x_{2}=\lambda_{1} x_{1}^{T} x_{2}
$$

and since $\lambda_{1} \neq \lambda_{2}, x_{1}^{T} x_{2}=0$.

Eigenvalues / eigenvectors, rank, SVD, inverse

The rank of a matrix $A \in \mathbb{R}^{m \times n}$ is defined as

$$
\operatorname{rank}(A)=\min \left\{r \mid A=\sum_{i=1}^{r} x_{i} y_{i}^{T}, x_{i}, y_{i} \in \mathbb{R}^{n}\right\}
$$

Eigenvalues / eigenvectors, rank, SVD, inverse

The rank of a matrix $A \in \mathbb{R}^{m \times n}$ is defined as

$$
\operatorname{rank}(A)=\min \left\{r \mid A=\sum_{i=1}^{r} x_{i} y_{i}^{T}, x_{i}, y_{i} \in \mathbb{R}^{n}\right\}
$$

Properties

- $\operatorname{rank}(A) \leq \min \{m, n\}$ (equality $=$ "full-rank")
- $\operatorname{rank}(A)=\operatorname{rank}\left(A^{T}\right)$
- $\operatorname{rank}(A B) \leq \min \{\operatorname{rank}(A B)\}$
- $\operatorname{rank}(A+B) \leq \operatorname{rank}(A)+\operatorname{rank}(B)$
- $\operatorname{rank}(A)+\operatorname{Nullity}(A)=\operatorname{Dim}(V)$ (rank-nullity theorem)

Eigenvalues / eigenvectors, rank, SVD, inverse

The determinant of a square matrix $A \in \mathbb{R}^{n \times n}$ is a scalar-valued function $\operatorname{det}(A): \mathbb{R}^{n \times n} \rightarrow \mathbb{R}$.
Consider the set of all linear combinations of the rows of A :

$$
S=\left\{v \in \mathbb{R}^{n} \mid v=\sum_{i=1}^{n} \alpha_{i} a_{i}, 0 \leq \alpha_{i} \leq 1, i=1, \ldots, n\right\}
$$

$|\operatorname{det}(A)|$ is the area of the n-dimensional parallelotope.

Eigenvalues / eigenvectors, rank, SVD, inverse

The determinant of a square matrix $A \in \mathbb{R}^{n \times n}$ is a scalar-valued function $\operatorname{det}(A): \mathbb{R}^{n \times n} \rightarrow \mathbb{R}$.
Consider the set of all linear combinations of the rows of A :

$$
S=\left\{v \in \mathbb{R}^{n} \mid v=\sum_{i=1}^{n} \alpha_{i} a_{i}, 0 \leq \alpha_{i} \leq 1, i=1, \ldots, n\right\}
$$

$|\operatorname{det}(A)|$ is the area of the n-dimensional parallelotope.

- If $\operatorname{rank}(A)<n, \operatorname{det}(A)=0$
- If $\operatorname{rank}(A)=n, \operatorname{det}(A) \neq 0$
- see wiki_link for more properties.

Eigenvalues / eigenvectors, rank, SVD, inverse

Given any matrix $A \in \mathbb{R}^{m \times n}$,

$$
A=U \Sigma V^{T}=\sum_{i=1}^{r} \sigma_{i} U_{i} \cdot V_{i}^{T}
$$

where $U \in \mathbb{R}^{m \times r}$ and $V \in \mathbb{R}^{n \times r}$ have orthogonal columns and $\Sigma=\operatorname{diag}\left\{\sigma_{1}, \sigma_{2}, \ldots, \sigma_{r}\right\}$ is a diagonal matrix with positive diagonal elements "singular values".

Eigenvalues / eigenvectors, rank, SVD, inverse

Given any matrix $A \in \mathbb{R}^{m \times n}$,

$$
A=U \Sigma V^{T}=\sum_{i=1}^{r} \sigma_{i} U_{i} \cdot V_{i}^{T}
$$

where $U \in \mathbb{R}^{m \times r}$ and $V \in \mathbb{R}^{n \times r}$ have orthogonal columns and $\Sigma=\operatorname{diag}\left\{\sigma_{1}, \sigma_{2}, \ldots, \sigma_{r}\right\}$ is a diagonal matrix with positive diagonal elements "singular values".

- $\operatorname{rank}(A)=r$
- $\|A x\| \leq \sigma_{1}\|x\|$. why?

Eigenvalues / eigenvectors, rank, SVD, inverse

A matrix $B \in \mathbb{R}^{n \times n}$ is called positive semi-definite (PSD), if the following are satisfied:

- B is symmetric
- $\forall x \in \mathbb{R}^{n}, x^{T} B x \geq 0$

Note B is PSD if B can be written: $B=U \Sigma U^{\top}$, where $U^{\top} U=I$

Matrix norms

- Frobeneus norm: $A_{F}=\left(\sum_{i, m}\left|A_{i j}\right|^{2} \mid\right)^{\frac{1}{2}}=\left(\sum_{i=1} \sigma_{i}^{2}\right)^{\frac{1}{2}}$
- spectral (trace) norm:
$\|A\|_{\text {spec }} \max _{\|x\|=1}\|A x\|=\max _{\|x\|=1,\|y\|=1} y^{T} A x=\sigma_{1}(A)$
- nuclear norm: $\|A\|_{*}=\sum_{i} \sigma_{i}(A)=\operatorname{trace}(\Sigma)$

Note if A is a vector, $\|A\|_{F}=\|A\|_{2}$.

Matrix norms

The inner product $\langle\cdot, \cdot\rangle$ in $\mathbb{R}^{m \times n}$ is defined as:

$$
\langle X, Y\rangle=\sum_{i j} X_{i j} Y_{i j}=\operatorname{trace}\left(X^{T} Y\right)
$$

In general,
$\operatorname{trace}(A B)=\operatorname{trace}(B A)=\operatorname{trace}\left(A^{T} B^{T}\right)=\operatorname{trace}\left(B^{T} A^{T}\right)$

Matrix and vector differential

Let $f(x): \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a (scalar-valued) continuous \& differentiable function. It's differential (gradient) is defined as:

$$
\nabla f(x)=\left[\begin{array}{c}
\frac{\partial f(x)}{\partial x_{1}} \\
\vdots \\
\frac{\partial f(x)}{\partial x_{n}}
\end{array}\right]
$$

Matrix and vector differential

$$
\nabla f(x)=\left[\begin{array}{c}
\frac{\partial f(x)}{\partial x_{1}} \\
\vdots \\
\frac{\partial f(x)}{\partial x_{n}}
\end{array}\right]
$$

example
Let $f(x)=1^{T} x=\sum_{i} x_{i}$.

$$
\nabla f(x)=\mathbf{1}
$$

Matrix and vector differential

$$
\nabla f(x)=\left[\begin{array}{c}
\frac{\partial f(x)}{\partial x_{1}} \\
\vdots \\
\frac{\partial f(x)}{\partial x_{n}}
\end{array}\right]
$$

example
Let $f(x)=x^{T} x=\sum_{i} x_{i}^{2}$.

$$
\nabla f(x)=2 x
$$

Matrix and vector differential

The product and chain rules hold when dealing with gradients of vector functions:

- Product rule: $\nabla(f(x) g(x))=f(x) \nabla g(x)+\nabla f(x) g(x)$
- Chain rule: $\frac{\partial}{\partial t} f(g(t))=\nabla f(g(t))^{T} \frac{\partial g}{\partial t}$

Matrix and vector differential

The Hessian $\nabla^{2} f=H$ is a matrix with entries $=f(x)$'s second-order derivatives:

$$
\nabla^{2} f(x)=\left[\begin{array}{ccc}
\frac{\partial^{2} f(x}{\left(\partial x_{1}\right)^{2}} & \ldots & \frac{\partial^{2} f(x)}{\partial x_{n} \partial x_{1}} \\
\vdots & \ddots & \vdots \\
\frac{\partial^{2} f(x)}{\partial x_{1} \partial x_{n}} & \cdots & \frac{\partial^{2} f(x)}{\left(\partial x_{n}\right)^{2}}
\end{array}\right]
$$

Matrix and vector differential

$$
\nabla^{2} f(x)=\left[\begin{array}{ccc}
\frac{\partial^{2} f(x}{\left(\partial x_{1}\right)^{2}} & \cdots & \frac{\partial^{2} f(x)}{\partial x_{n} \partial x_{1}} \\
\vdots & \ddots & \vdots \\
\frac{\partial^{2} f(x)}{\partial x_{1} \partial x_{n}} & \cdots & \frac{\partial^{2} f(x)}{\left(\partial x_{n}\right)^{2}}
\end{array}\right]
$$

example
$f(x)=\frac{1}{2} x^{\top} A x=\frac{1}{2} x_{1}^{2}+\frac{1}{2} x_{2}^{2}, A=I$.
$\nabla^{2} f(x)=A$

Matrix and vector differential

Let $f(X): \mathbb{R}^{m \times n} \rightarrow \mathbb{R}$ be a (scalar-valued) function. It's differential (gradient) is defined as:

$$
\frac{\partial f(X)}{\partial X}=\left[\begin{array}{ccc}
\frac{\partial f(X)}{\partial X_{11}} & \ldots & \frac{\partial f(X)}{\partial X_{i n}} \\
\vdots & \ddots & \vdots \\
\frac{\partial f(X)}{\partial X_{m 1}} & \ldots & \frac{\partial f(X)}{\partial X_{m n}}
\end{array}\right]
$$

Linear equalities and inequalities

A linear system can be described as the matrix equality $A x=b$. A solution exists if there is an assignment to the entries of x such that

$$
a_{i 1} x_{1}+a_{i 1} x_{2}+\ldots+a_{i n} x_{n}=b_{i}
$$

The LHS defines a linear combination of A 's column vectors - i.e. the system as a solution if b is in the space spanned by the columns of A.

Linear equalities and inequalities

The solution to system of linear equalities corresponds to the point of intersection of m hyperplanes.

Linear equalities and inequalities

Alternatively, the solution set to system of linear inequalities: $\{x \mid A x \leq b\}$ defines the intersection of m half-planes.

