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Math Foundations: Review for CSE 203B

Chester Holtz

chholtz@eng.ucsd.edu
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Overview

I Notations & general assumptions
I Vector norms, inner products
I Linear spaces, subspaces, linear transformations
I Eigenvalues / eigenvectors, rank, SVD, inverse
I Matrix norms
I Matrix and vector differential
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Notations & basic assumptions

I Greek alphabet α, β, γ denote real numbers
I Small letters x , y , z denote vectors
I Capital letters denote matrices A,B,C
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Notations & basic assumptions

I Greek alphabet α, β, γ denote real numbers
I Small letters x , y , z denote vectors
I Capital letters denote matrices A,B,C
I R is the one dimensional Euclidean space
I Rn is the n-dimensional vector Euclidean space
I Rm×n is the m × n dimensional matrix Euclidean space
I R+ denotes the range [0,+∞), R++ denotes the range (0,∞ )
I 1n ∈ Rn denotes a vector with 1 in all entries
I For any vector x ∈ Rn, |x |i = |x |i ∀i = 1, . . . , n



5/50

Vector norms, Inner product

A function f : x ∈ Rn → y ∈ R+ is called a norm if the following
conditions are satisfied:

1. (zero element) f (x) ≥ 0 and f (x) = 0 iff x = 0
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Vector norms, Inner product

A function f : x ∈ Rn → y ∈ R+ is called a norm if the following
conditions are satisfied:

1. (zero element) f (x) ≥ 0 and f (x) = 0 iff x = 0
2. (Homogeneity) For any α ∈ R and x ∈ Rn, f (αx) = |α|f (x)
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Vector norms, Inner product

A function f : x ∈ Rn → y ∈ R+ is called a norm if the following
conditions are satisfied:

1. (zero element) f (x) ≥ 0 and f (x) = 0 iff x = 0
2. (Homogeneity) For any α ∈ Rand x ∈ Rn, f (αx) = |α|f (x)
3. (Triangle inequality) x , y ∈ Rn satisfy f (x) + f (y) ≥ f (x + y)
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Vector norms, Inner product
1. (zero element) f (x) ≥ 0 and f (x) = 0 iff x = 0
2. (Homogeneity) For any α ∈ Rand x ∈ Rn , f (αx) = |α|f (x)
3. (Triangle inequality) x, y ∈ Rn satisfy f (x) + f (y) ≥ f (x + y)

Example
I `1 norm “|| · ||1” is defined as ||x ||1 = (|x1|+ |x2|+ . . . |xn|)
I `2 norm “|| · ||2” is defined as
||x ||2 = (|x1|2 + |x2|2 + . . . |xn|2) 1

2
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Vector norms, Inner product

In general, an `p norm (p ≥ 1) is defined as

||x ||p = (|x1|p + |x2|p + . . . |xn|p)
1
p

Note:
I for p < 1, triangle inequality is violated.
I ||x ||∞ = limp→+∞ ||x ||p max{|x1|, |x2|, . . . , |xn|}
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Vector norms, Inner product

The inner product. 〈·, ·〉 in Rn is defined as

〈x , y〉 =
∑

i
xiyi
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Vector norms, Inner product

The inner product. 〈·, ·〉 in Rn is defined as

〈x , y〉 =
∑

i
xiyi

Note that 〈x , x〉 = ||x ||2. Two vectors x and y are orthogonal if
〈x , y〉 = 0
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Vector norms, Inner product

The inner product. 〈·, ·〉 in Rn is defined as

〈x , y〉 =
∑

i
xiyi

Note that 〈x , x〉 = ||x ||2. Two vectors x and y are orthogonal if
〈x , y〉 = 0

Furthermore, if p ≥ q, then for any x ∈ Rn, ||x ||p ≤ ||x ||q. In
particular,

||x ||1 ≥ ||x ||2 ≥ ||x ||∞
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Vector norms, Inner product

||x ||1 ≤
√

n||x ||2 ||x ||2 ≤
√

n||x ||∞

Proof
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Vector norms, Inner product

||x ||1 ≤
√

n||x ||2 ||x ||2 ≤
√

n||x ||∞

Proof

||x ||1 = 〈1n, |x |〉 ≤ ||1n||2 |||x |||2 =
√

n||x ||2

Cauchy Schwarz inequality :

|〈u, v〉|2 ≤ 〈u, u〉〈v , v〉

or
|〈u, v〉| ≤ ||u|| ||v ||
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Vector norms, Inner product

Given a norm ||x ||A, its dual norm is defined as

||x ||A∗ = max
||y ||A≤1

〈x , y〉 = max
||y ||A=1

〈x , y〉 = max
z
〈x , z〉
||z ||A
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Vector norms, Inner product

Given a norm ||x ||A, its dual norm is defined as

||x ||A∗ = max
||y ||A≤1

〈x , y〉 = max
||y ||A=1

〈x , y〉 = max
z
〈x , z〉
||z ||A

I The dual norm’s dual norm is itself. ||x ||(A∗)∗ = ||x ||A
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Vector norms, Inner product

Given a norm ||x ||A, its dual norm is defined as

||x ||A∗ = max
||y ||A≤1

〈x , y〉 = max
||y ||A=1

〈x , y〉 = max
z
〈x , z〉
||z ||A

I The dual norm’s dual norm is itself. ||x ||(A∗)∗ = ||x ||A
I The `2 norm is self-dual
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Vector norms, Inner product

Given a norm ||x ||A, its dual norm is defined as

||x ||A∗ = max
||y ||A≤1

〈x , y〉 = max
||y ||A=1

〈x , y〉 = max
z
〈x , z〉
||z ||A

I The dual norm’s dual norm is itself. ||x ||(A∗)∗ = ||x ||A
I The `2 norm is self-dual
I In general, the dual norm of an `p norm is an `q norm where

p, q satisfy 1/p + 1/q = 1
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Vector norms, Inner product

Given a norm ||x ||A, its dual norm is defined as

||x ||A∗ = max
||y ||A≤1

〈x , y〉 = max
||y ||A=1

〈x , y〉 = max
z
〈x , z〉
||z ||A

I The dual norm’s dual norm is itself. ||x ||(A∗)∗ = ||x ||A
I The `2 norm is self-dual
I In general, the dual norm of an `p norm is an `q norm where

p, q satisfy 1/p + 1/q = 1
I (Holder inequality): 〈x , y〉 ≤ ||x ||A||y ||A∗
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Linear space, subspace, linear transformation

A set S is a linear space if
I 0 ∈ S
I given any two points x , y ∈ S and scalars α, β ∈ R.

αx + βy ∈ S
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Linear space, subspace, linear transformation
I 0 ∈ S
I given any two points x, y ∈ S and scalars α, β ∈ R, αx + βy ∈ S

examples
I ∅ ?
I 0 ?
I {0} ?
I {x |Ax = b} ?
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Linear space, subspace, linear transformation

Let S be a linear space. A set S ′ is a subspace if S ′ is a linear
space and also a subset of S.
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Linear space, subspace, linear transformation

Let S be a linear space. A function L(·) is a linear transformation
if given x , y ∈ S and scalars α, β ∈ R,

L(αx + βy) = αL(x) + βL(y)

Note 1-1 correspondence between linear transformations and
matrices.
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Linear space, subspace, linear transformation

Expressing a subspace
A bunch of vectors. The range space of a matrix X :

span{x1, x2, . . . , xn} =
{ n∑

i=1
αixi |αi ∈ R

}
= {Xα|α}
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Linear space, subspace, linear transformation

Expressing a subspace
A bunch of vectors. The range space of a matrix X :

spanx1, x2, . . . , xn =
{ n∑

i=1
αixi |αi ∈ R

}
= {Xα|α}

The null space of X :
{α|Xα = 0}
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Eigenvalues / eigenvectors, rank, SVD, inverse

The transpose of a matrix A ∈ Rm×n is defined as AT ∈ Rn×n:

(AT )ij = Aji
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Eigenvalues / eigenvectors, rank, SVD, inverse

The transpose of a matrix A ∈ Rm×n is defined as AT ∈ Rn×n:

(AT )ij = Aji

Can verify that
(AB)T = BT AT
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Eigenvalues / eigenvectors, rank, SVD, inverse

A matrix B ∈ Rn×n is the inverse of an invertible matrix A ∈ Rn×n

if:
AB = I and BA = I

Note the following properties:
I (AB)−1 = B−1A−1

I (AT )−1 = (A−1)T
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Eigenvalues / eigenvectors, rank, SVD, inverse

Given a square matrix A ∈ Rn×n, x ∈ Rn, (x 6= 0) is called its
eigenvector and λ ∈ R is its associated eigenvalue if:

Ax = λx
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Eigenvalues / eigenvectors, rank, SVD, inverse

Given a square matrix A ∈ Rn×n, x ∈ Rn, (x 6= 0) is called its
eigenvector and λ ∈ R is its associated eigenvalue if:

Ax = λx

Properties
I If the matrix A is symmetric, any two eigenvectors

(corresponding to different eigenvalues) are orthogonal.
I detA =

∏
iλi

I The rank of A is equal to the number of non-zero eigenvalues.
I If A is invertible, 1/λi is an eigenvalue of A−1

I λmax = supx 6=0
xT Ax
xT x
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Eigenvalues / eigenvectors, rank, SVD, inverse

If AT = A, Ax1 = λ1x1, Ax2 = λ2x2, and λ1 6= λ2, then xT
1 x2 = 0

proof
Consider XT

1 Ax2. We have that

xT
1 Ax2 = xT

1 (Ax2) = xT
1 (λ2x2) = λ2xT

1 x2

and

xT
1 Ax2 = (xT

1 A)x2 = (AT x1)T x2 = (Ax1)T x2 = λ1xT
1 x2

So
λ2xT

1 x2 = λ1xT
1 x2

and since λ1 6= λ2, xT
1 x2 = 0.



32/50

Eigenvalues / eigenvectors, rank, SVD, inverse

The rank of a matrix A ∈ Rm×n is defined as

rank(A) = min
{

r |A =
r∑

i=1
xiyT

i , xi , yi ∈ Rn
}
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Eigenvalues / eigenvectors, rank, SVD, inverse

The rank of a matrix A ∈ Rm×n is defined as

rank(A) = min
{

r |A =
r∑

i=1
xiyT

i , xi , yi ∈ Rn
}

Properties
I rank(A) ≤ min{m, n} (equality = “full-rank”)
I rank(A) = rank(AT )
I rank(AB) ≤ min{rank(AB)}
I rank(A + B) ≤ rank(A) + rank(B)
I rank(A) + Nullity(A) = Dim(V ) (rank-nullity theorem)
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Eigenvalues / eigenvectors, rank, SVD, inverse

The determinant of a square matrix A ∈ Rn×n is a scalar-valued
function det(A) : Rn×n → R.
Consider the set of all linear combinations of the rows of A:

S = {v ∈ Rn|v =
n∑

i=1
αiai , 0 ≤ αi ≤ 1, i = 1, . . . , n}

|det(A)| is the area of the n-dimensional parallelotope.
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Eigenvalues / eigenvectors, rank, SVD, inverse

The determinant of a square matrix A ∈ Rn×n is a scalar-valued
function det(A) : Rn×n → R.
Consider the set of all linear combinations of the rows of A:

S = {v ∈ Rn|v =
n∑

i=1
αiai , 0 ≤ αi ≤ 1, i = 1, . . . , n}

|det(A)| is the area of the n-dimensional parallelotope.
I If rank(A) < n, det(A) = 0
I If rank(A) = n, det(A) 6= 0
I see wiki link for more properties.

https://en.wikipedia.org/wiki/Determinant
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Eigenvalues / eigenvectors, rank, SVD, inverse

Given any matrix A ∈ Rm×n,

A = UΣV T =
r∑

i=1
σiUi ·V T

i ·

where U ∈ Rm×r and V ∈ Rn×r have orthogonal columns and
Σ = diag{σ1, σ2, . . . , σr} is a diagonal matrix with positive
diagonal elements “singular values”.
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Eigenvalues / eigenvectors, rank, SVD, inverse

Given any matrix A ∈ Rm×n,

A = UΣV T =
r∑

i=1
σiUi ·V T

i ·

where U ∈ Rm×r and V ∈ Rn×r have orthogonal columns and
Σ = diag{σ1, σ2, . . . , σr} is a diagonal matrix with positive
diagonal elements “singular values”.
I rank(A) = r
I ||Ax || ≤ σ1||x ||. why?
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Eigenvalues / eigenvectors, rank, SVD, inverse

A matrix B ∈ Rn×n is called positive semi-definite (PSD), if the
following are satisfied:
I B is symmetric
I ∀x ∈ Rn, xT Bx ≥ 0

Note B is PSD if B can be written: B = UΣUT , where UT U = I
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Matrix norms

I Frobeneus norm: AF =
(∑

i ,m |Aij |2|
) 1

2 =
(∑

i=1 σ
2
i
) 1

2

I spectral (trace) norm:
||A||spec max||x ||=1 ||Ax || = max||x ||=1,||y ||=1 yT Ax = σ1(A)

I nuclear norm: ||A||∗ =
∑

i σi (A) = trace(Σ)
Note if A is a vector, ||A||F = ||A||2.
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Matrix norms

The inner product 〈·, ·〉 in Rm×n is defined as:

〈X ,Y 〉 =
∑

ij
XijYij = trace(XT Y )

In general,
trace(AB) = trace(BA) = trace(AT BT ) = trace(BT AT )
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Matrix and vector differential

Let f (x) : Rn → R be a (scalar-valued) continuous & differentiable
function. It’s differential (gradient) is defined as:

∇f (x) =


∂f (x)
∂x1...

∂f (x)
∂xn
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Matrix and vector differential

∇f (x) =

 ∂f (x)
∂x1

...
∂f (x)
∂xn



example
Let f (x) = 1T x =

∑
i xi .

∇f (x) = 1
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Matrix and vector differential

∇f (x) =

 ∂f (x)
∂x1

...
∂f (x)
∂xn



example
Let f (x) = xT x =

∑
i x2

i .

∇f (x) = 2x
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Matrix and vector differential

The product and chain rules hold when dealing with gradients of
vector functions:
I Product rule: ∇(f (x)g(x)) = f (x)∇g(x) +∇f (x)g(x)
I Chain rule: ∂

∂t f (g(t)) = ∇f (g(t))T ∂g
∂t
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Matrix and vector differential

The Hessian ∇2f = H is a matrix with entries = f (x)’s
second-order derivatives:

∇2f (x) =


∂2f (x
(∂x1)2 . . . ∂2f (x)

∂xn∂x1
... . . . ...

∂2f (x)
∂x1∂xn

. . . ∂2f (x)
(∂xn)2
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Matrix and vector differential

∇2f (x) =


∂2 f (x
(∂x1)2 . . .

∂2 f (x)
∂xn∂x1

...
. . .

...
∂2 f (x)
∂x1∂xn

. . .
∂2 f (x)
(∂xn)2



example
f (x) = 1

2xT Ax = 1
2x2

1 + 1
2x2

2 , A = I.
∇2f (x) = A
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Matrix and vector differential

Let f (X ) : Rm×n → R be a (scalar-valued) function. It’s
differential (gradient) is defined as:

∂f (X )
∂X =


∂f (X)
∂X11

. . . ∂f (X)
∂Xin... . . . ...

∂f (X)
∂Xm1

. . . ∂f (X)
∂Xmn
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Linear equalities and inequalities

A linear system can be described as the matrix equality Ax = b. A
solution exists if there is an assignment to the entries of x such
that

ai1x1 + ai1x2 + . . .+ ainxn = bi

The LHS defines a linear combination of A’s column vectors - i.e.
the system as a solution if b is in the space spanned by the
columns of A.
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Linear equalities and inequalities

The solution to system of linear equalities corresponds to the point
of intersection of m hyperplanes.
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Linear equalities and inequalities

Alternatively, the solution set to system of linear inequalities:
{x |Ax ≤ b} defines the intersection of m half-planes.
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