Math Foundations: Review for CSE 203B

Chester Holtz

chholtz@eng.ucsd.edu OH: Fri 6:30 - 7:30 pm

Overview

- Notations & general assumptions
- Vector norms, inner products
- Linear spaces, subspaces, linear transformations
- Eigenvalues / eigenvectors, rank, SVD, inverse
- Matrix norms
- Matrix and vector differential

Notations & basic assumptions

- Greek alphabet α, β, γ denote real numbers
- Small letters x, y, z denote vectors
- Capital letters denote matrices A, B, C

Notations & basic assumptions

- Greek alphabet α, β, γ denote real numbers
- Small letters x, y, z denote vectors
- ► Capital letters denote matrices A, B, C
- $\blacktriangleright \ \mathbb{R}$ is the one dimensional Euclidean space
- ▶ \mathbb{R}^n is the *n*-dimensional vector Euclidean space
- ▶ $\mathbb{R}^{m \times n}$ is the $m \times n$ dimensional *matrix* Euclidean space
- ▶ \mathbb{R}_+ denotes the range $[0, +\infty)$, \mathbb{R}_{++} denotes the range $(0,_\infty)$
- ▶ $1_n \in \mathbb{R}^n$ denotes a vector with 1 in all entries
- For any vector $x \in \mathbb{R}^n$, $|x|_i = |x|_i$ $\forall i = 1, ..., n$

A function $f : x \in \mathbb{R}^n \to y \in \mathbb{R}_+$ is called a norm if the following conditions are satisfied:

1. (zero element) $f(x) \ge 0$ and f(x) = 0 iff x = 0

A function $f : x \in \mathbb{R}^n \to y \in \mathbb{R}_+$ is called a norm if the following conditions are satisfied:

- 1. (zero element) $f(x) \ge 0$ and f(x) = 0 iff x = 0
- 2. (Homogeneity) For any $\alpha \in \mathbb{R}$ and $x \in \mathbb{R}^n$, $f(\alpha x) = |\alpha|f(x)$

A function $f : x \in \mathbb{R}^n \to y \in \mathbb{R}_+$ is called a norm if the following conditions are satisfied:

- 1. (zero element) $f(x) \ge 0$ and f(x) = 0 iff x = 0
- 2. (Homogeneity) For any $\alpha \in \mathbb{R}$ and $x \in \mathbb{R}^n$, $f(\alpha x) = |\alpha|f(x)$
- 3. (Triangle inequality) $x, y \in \mathbb{R}^n$ satisfy $f(x) + f(y) \ge f(x + y)$

- 1. (zero element) $f(x) \ge 0$ and f(x) = 0 iff x = 0
- 2. (Homogeneity) For any $\alpha \in \mathbb{R}$ and $x \in \mathbb{R}^n$, $f(\alpha x) = |\alpha|f(x)$
- 3. (Triangle inequality) $x, y \in \mathbb{R}^n$ satisfy $f(x) + f(y) \ge f(x + y)$

Example

 ℓ₁ norm "|| · ||₁" is defined as ||x||₁ = (|x₁| + |x₂| + ... |x_n|)
ℓ₂ norm "|| · ||₂" is defined as ||x||₂ = (|x₁|² + |x₂|² + ... |x_n|²)^{1/2}

In general, an ℓ_p norm ($p \ge 1$) is defined as

$$||x||_{p} = (|x_{1}|^{p} + |x_{2}|^{p} + \dots |x_{n}|^{p})^{\frac{1}{p}}$$

Note:

The inner product. $\langle \cdot, \cdot \rangle$ in \mathbb{R}^n is defined as

$$\langle x, y \rangle = \sum_{i} x_{i} y_{i}$$

The inner product. $\langle\cdot,\cdot\rangle$ in \mathbb{R}^n is defined as

$$\langle x, y \rangle = \sum_i x_i y_i$$

Note that $\langle x,x\rangle=||x||^2$. Two vectors x and y are orthogonal if $\langle x,y\rangle=0$

The inner product. $\langle \cdot, \cdot \rangle$ in \mathbb{R}^n is defined as

$$\langle x, y \rangle = \sum_{i} x_{i} y_{i}$$

Note that $\langle x,x\rangle=||x||^2.$ Two vectors x and y are orthogonal if $\langle x,y\rangle=0$

Furthermore, if $p \ge q$, then for any $x \in \mathbb{R}^n$, $||x||_p \le ||x||_q$. In particular,

$$||x||_1 \ge ||x||_2 \ge ||x||_\infty$$

$||x||_1 \le \sqrt{n} ||x||_2 \quad ||x||_2 \le \sqrt{n} ||x||_\infty$

Proof

$$||x||_1 \le \sqrt{n} ||x||_2 \quad ||x||_2 \le \sqrt{n} ||x||_\infty$$

Proof

$$||x||_1 = \langle 1_n, |x| \rangle \le ||1_n||_2 |||x|||_2 = \sqrt{n} ||x||_2$$

Cauchy Schwarz inequality:

$$|\langle u, v \rangle|^2 \leq \langle u, u \rangle \langle v, v \rangle$$

or

$$|\langle u, v \rangle| \leq ||u|| \, ||v||$$

Given a norm $||x||_A$, its dual norm is defined as

$$||x||_{\mathcal{A}^*} = \max_{||y||_{\mathcal{A}} \le 1} \langle x, y \rangle = \max_{||y||_{\mathcal{A}} = 1} \langle x, y \rangle = \max_{z} \frac{\langle x, z \rangle}{||z||_{\mathcal{A}}}$$

Given a norm $||x||_A$, its dual norm is defined as

$$||x||_{\mathcal{A}^*} = \max_{||y||_{\mathcal{A}} \le 1} \langle x, y \rangle = \max_{||y||_{\mathcal{A}} = 1} \langle x, y \rangle = \max_{z} \frac{\langle x, z \rangle}{||z||_{\mathcal{A}}}$$

▶ The dual norm's dual norm is itself. $||x||_{(A^*)^*} = ||x||_A$

Given a norm $||x||_A$, its dual norm is defined as

$$||x||_{\mathcal{A}^*} = \max_{||y||_{\mathcal{A}} \le 1} \langle x, y \rangle = \max_{||y||_{\mathcal{A}} = 1} \langle x, y \rangle = \max_{z} \frac{\langle x, z \rangle}{||z||_{\mathcal{A}}}$$

The dual norm's dual norm is itself. ||x||_{(A*)*} = ||x||_A
The ℓ₂ norm is self-dual

Given a norm $||x||_A$, its dual norm is defined as

$$||x||_{\mathcal{A}^*} = \max_{||y||_A \leq 1} \langle x, y \rangle = \max_{||y||_A = 1} \langle x, y \rangle = \max_z \frac{\langle x, z \rangle}{||z||_A}$$

- ▶ The dual norm's dual norm is itself. $||x||_{(A^*)^*} = ||x||_A$
- ▶ The ℓ_2 norm is self-dual
- ▶ In general, the dual norm of an ℓ_p norm is an ℓ_q norm where p, q satisfy 1/p + 1/q = 1

Given a norm $||x||_A$, its dual norm is defined as

$$||x||_{\mathcal{A}^*} = \max_{||y||_A \leq 1} \langle x, y \rangle = \max_{||y||_A = 1} \langle x, y \rangle = \max_z \frac{\langle x, z \rangle}{||z||_A}$$

- ▶ The dual norm's dual norm is itself. $||x||_{(A^*)^*} = ||x||_A$
- The ℓ_2 norm is self-dual
- ▶ In general, the dual norm of an ℓ_p norm is an ℓ_q norm where p, q satisfy 1/p + 1/q = 1
- (Holder inequality): $\langle x, y \rangle \leq ||x||_{\mathcal{A}} ||y||_{\mathcal{A}^*}$

A set S is a linear space if

▶ 0 ∈ S

• given any two points $x, y \in S$ and scalars $\alpha, \beta \in \mathbb{R}$.

 $\alpha x + \beta y \in S$

▶ 0 ∈ S

• given any two points $x, y \in S$ and scalars $\alpha, \beta \in \mathbb{R}, \alpha x + \beta y \in S$

examples

- ▶ Ø ?
- ▶ 0 ?

$$\blacktriangleright \{x | Ax = b\} ?$$

Let S be a linear space. A set S' is a subspace if S' is a linear space and also a subset of S.

Let S be a linear space. A function $L(\cdot)$ is a linear transformation if given $x, y \in S$ and scalars $\alpha, \beta \in \mathbb{R}$,

$$L(\alpha x + \beta y) = \alpha L(x) + \beta L(y)$$

Note 1-1 correspondence between linear transformations and matrices.

Expressing a subspace

A bunch of vectors. The range space of a matrix X:

span{
$$x_1, x_2, \ldots, x_n$$
} = $\left\{\sum_{i=1}^n \alpha_i x_i | \alpha_i \in \mathbb{R}\right\}$ = { $X\alpha | \alpha$ }

Expressing a subspace

A bunch of vectors. The range space of a matrix X:

span
$$x_1, x_2, \ldots, x_n = \left\{ \sum_{i=1}^n \alpha_i x_i | \alpha_i \in \mathbb{R} \right\} = \{ X \alpha | \alpha \}$$

The null space of X:

$$\{\alpha | X\alpha = 0\}$$

The transpose of a matrix $A \in \mathbb{R}^{m \times n}$ is defined as $A^T \in \mathbb{R}^{n \times n}$:

$$(A^T)_{ij} = A_{ji}$$

The transpose of a matrix $A \in \mathbb{R}^{m \times n}$ is defined as $A^T \in \mathbb{R}^{n \times n}$:

$$(A^T)_{ij} = A_{ji}$$

Can verify that

$$(AB)^T = B^T A^T$$

A matrix $B \in \mathbb{R}^{n \times n}$ is the inverse of an invertible matrix $A \in \mathbb{R}^{n \times n}$ if:

AB = I and BA = I

Note the following properties:

•
$$(AB)^{-1} = B^{-1}A^{-1}$$

• $(A^T)^{-1} = (A^{-1})^T$

Given a square matrix $A \in \mathbb{R}^{n \times n}$, $x \in \mathbb{R}^n$, $(x \neq 0)$ is called its eigenvector and $\lambda \in \mathbb{R}$ is its associated eigenvalue if:

 $Ax = \lambda x$

Given a square matrix $A \in \mathbb{R}^{n \times n}$, $x \in \mathbb{R}^n$, $(x \neq 0)$ is called its eigenvector and $\lambda \in \mathbb{R}$ is its associated eigenvalue if:

$$Ax = \lambda x$$

Properties

If the matrix A is symmetric, any two eigenvectors (corresponding to different eigenvalues) are orthogonal.

•
$$\det A = \prod i \lambda_i$$

The rank of A is equal to the number of non-zero eigenvalues.

• If A is invertible,
$$1/\lambda_i$$
 is an eigenvalue of A^{-1}

$$\lambda_{\max} = \sup_{x \neq 0} \frac{x^T A x}{x^T x}$$

If
$$A^T = A$$
, $Ax_1 = \lambda_1 x_1$, $Ax_2 = \lambda_2 x_2$, and $\lambda_1 \neq \lambda_2$, then $x_1^T x_2 = 0$
proof

Consider $X_1^T A x_2$. We have that

$$x_1^T A x_2 = x_1^T (A x_2) = x_1^T (\lambda_2 x_2) = \lambda_2 x_1^T x_2$$

and

$$x_1^T A x_2 = (x_1^T A) x_2 = (A^T x_1)^T x_2 = (A x_1)^T x_2 = \lambda_1 x_1^T x_2$$

So

$$\lambda_2 x_1^T x_2 = \lambda_1 x_1^T x_2$$

and since $\lambda_1 \neq \lambda_2, x_1^T x_2 = 0$.

The rank of a matrix $A \in \mathbb{R}^{m \times n}$ is defined as

$$\operatorname{rank}(A) = \min\left\{r|A = \sum_{i=1}^{r} x_i y_i^T, x_i, y_i \in \mathbb{R}^n\right\}$$

The rank of a matrix $A \in \mathbb{R}^{m imes n}$ is defined as

$$\operatorname{rank}(A) = \min\left\{r|A = \sum_{i=1}^{r} x_i y_i^T, x_i, y_i \in \mathbb{R}^n\right\}$$

Properties

- ▶ $rank(A) \le min\{m, n\}$ (equality = "full-rank")
- ▶ $\operatorname{rank}(A) = \operatorname{rank}(A^T)$
- ▶ $rank(AB) \le min\{rank(AB)\}$
- ▶ $rank(A + B) \le rank(A) + rank(B)$
- ▶ rank(A) + Nullity(A) = Dim(V) (rank-nullity theorem)

The determinant of a square matrix $A \in \mathbb{R}^{n \times n}$ is a scalar-valued function $det(A) : \mathbb{R}^{n \times n} \to \mathbb{R}$.

Consider the set of all linear combinations of the rows of A:

$$S = \{ \mathbf{v} \in \mathbb{R}^n | \mathbf{v} = \sum_{i=1}^n \alpha_i \mathbf{a}_i, 0 \le \alpha_i \le 1, i = 1, \dots, n \}$$

 $|\det(A)|$ is the area of the *n*-dimensional parallelotope.

The determinant of a square matrix $A \in \mathbb{R}^{n \times n}$ is a scalar-valued function $det(A) : \mathbb{R}^{n \times n} \to \mathbb{R}$.

Consider the set of all linear combinations of the rows of A:

$$S = \{ \mathbf{v} \in \mathbb{R}^n | \mathbf{v} = \sum_{i=1}^n \alpha_i \mathbf{a}_i, 0 \le \alpha_i \le 1, i = 1, \dots, n \}$$

 $|\det(A)|$ is the area of the *n*-dimensional parallelotope.

• If
$$\operatorname{rank}(A) < n$$
, $\det(A) = 0$

• If
$$\operatorname{rank}(A) = n$$
, $\det(A) \neq 0$

Given any matrix $A \in \mathbb{R}^{m \times n}$,

$$A = U\Sigma V^{T} = \sum_{i=1}^{r} \sigma_{i} U_{i} \cdot V_{i}^{T}$$

where $U \in \mathbb{R}^{m \times r}$ and $V \in \mathbb{R}^{n \times r}$ have orthogonal columns and $\Sigma = \text{diag}\{\sigma_1, \sigma_2, \dots, \sigma_r\}$ is a diagonal matrix with positive diagonal elements "singular values".

Given any matrix $A \in \mathbb{R}^{m imes n}$,

$$A = U\Sigma V^{T} = \sum_{i=1}^{r} \sigma_{i} U_{i} \cdot V_{i}^{T}$$

where $U \in \mathbb{R}^{m \times r}$ and $V \in \mathbb{R}^{n \times r}$ have orthogonal columns and $\Sigma = \text{diag}\{\sigma_1, \sigma_2, \dots, \sigma_r\}$ is a diagonal matrix with positive diagonal elements "singular values".

$$\blacktriangleright \operatorname{rank}(A) = r$$

► $||Ax|| \le \sigma_1 ||x||$. why?

A matrix $B \in \mathbb{R}^{n \times n}$ is called positive semi-definite (PSD), if the following are satisfied:

► *B* is symmetric

►
$$\forall x \in \mathbb{R}^n$$
, $x^T B x \ge 0$

Note B is PSD if B can be written: $B = U\Sigma U^T$, where $U^T U = I$

Matrix norms

• Frobeneus norm:
$$A_F = \left(\sum_{i,m} |A_{ij}|^2\right)^{\frac{1}{2}} = \left(\sum_{i=1} \sigma_i^2\right)^{\frac{1}{2}}$$

The inner product $\langle \cdot, \cdot \rangle$ in $\mathbb{R}^{m \times n}$ is defined as:

$$\langle X, Y \rangle = \sum_{ij} X_{ij} Y_{ij} = \operatorname{trace}(X^T Y)$$

In general, trace(AB) = trace(BA) = trace(A^TB^T) = trace(B^TA^T) Let $f(x) : \mathbb{R}^n \to \mathbb{R}$ be a (scalar-valued) continuous & differentiable function. It's differential (gradient) is defined as:

$$\nabla f(x) = \begin{bmatrix} \frac{\partial f(x)}{\partial x_1} \\ \vdots \\ \frac{\partial f(x)}{\partial x_n} \end{bmatrix}$$

example
Let
$$f(x) = 1^T x = \sum_i x_i$$
.
 $\nabla f(x) = 1$

example
Let
$$f(x) = x^T x = \sum_i x_i^2$$
.
 $\nabla f(x) = 2x$

The product and chain rules hold when dealing with gradients of vector functions:

▶ Product rule: $\nabla(f(x)g(x)) = f(x)\nabla g(x) + \nabla f(x)g(x)$

• Chain rule:
$$\frac{\partial}{\partial t}f(g(t)) = \nabla f(g(t))^T \frac{\partial g}{\partial t}$$

The Hessian $\nabla^2 f = H$ is a matrix with entries = f(x)'s second-order derivatives:

$$\nabla^2 f(x) = \begin{bmatrix} \frac{\partial^2 f(x)}{(\partial x_1)^2} & \cdots & \frac{\partial^2 f(x)}{\partial x_n \partial x_1} \\ \vdots & \ddots & \vdots \\ \frac{\partial^2 f(x)}{\partial x_1 \partial x_n} & \cdots & \frac{\partial^2 f(x)}{(\partial x_n)^2} \end{bmatrix}$$

example $f(x) = \frac{1}{2}x^T A x = \frac{1}{2}x_1^2 + \frac{1}{2}x_2^2, A = I.$ $\nabla^2 f(x) = A$

Let $f(X) : \mathbb{R}^{m \times n} \to \mathbb{R}$ be a (scalar-valued) function. It's differential (gradient) is defined as:

$$\frac{\partial f(X)}{\partial X} = \begin{bmatrix} \frac{\partial f(X)}{\partial X_{11}} & \cdots & \frac{\partial f(X)}{\partial X_{in}} \\ \vdots & \ddots & \vdots \\ \frac{\partial f(X)}{\partial X_{m1}} & \cdots & \frac{\partial f(X)}{\partial X_{mn}} \end{bmatrix}$$

A linear system can be described as the matrix equality Ax = b. A solution exists if there is an assignment to the entries of x such that

$$a_{i1}x_1 + a_{i1}x_2 + \ldots + a_{in}x_n = b_i$$

The LHS defines a linear combination of A's column vectors - i.e. the system as a solution if b is in the space spanned by the columns of A.

Linear equalities and inequalities

The solution to system of linear equalities corresponds to the point of intersection of m hyperplanes.

Linear equalities and inequalities

Alternatively, the solution set to system of linear inequalities: $\{x | Ax \le b\}$ defines the intersection of *m* half-planes.

