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Definition of Convex Functions

* A function f: R™ — R is convex if dom f is a convex set and if for all
x,y€domfand0<6<1 _
f(6x + (1= 6)y) < 6f(x) + (1 = O)f (y) jomerimes caled

: : o Jensen’s inequality
* Review the proof in class: necessary and sufficiency

e Strict convexity:f(Ox + (1 —0)y) <O0f(x) + (1 —6)f(y),x #
y,0< 8 <1

* Concave functions: —f is convex

Ox + (1 —0)y,6f() + 1 - O)f ()




Restriction of a convex function to a line

* A function f: R™ — R is convex if and only if the function g: R — R,
g(t) = f(x + tv), dom g = {t| x + tv € dom f}

is a convex on its domain for Vx € dom f,v € R".

* The property can be useful to check the convexity of a function

Example: Prove f(X) = logdetX,dom f = S}, is concave.



Restriction of a convex function to a line

Example: Prove f(X) = logdetX,dom f = S}, is concave.

Consider an arbitrary line X = Z + tV, where Z € SI',,V € S™. Define g(t) =
f(Z + tV) and restrict g to the interval values of t for Z + tV > 0. We have

1 1 1
g(t) = logdet(Z + tV) = logdet(z2(] + tz72v272)71/2)

n
» Properties from HWO _ 1 1 | | p
> det AB =det A detB z og(1 + t4;) + logdet
> detA = [[}L 4 i=1

1 1
where A; are the eigenvalues of Z 2V/Z 2. So we have

n n
() = z 4 "(t) = 2 i <0
gt = L1+ tA;’ g B - (1+tA;)2~

g(t) is concave, hence f(X) is concave. For more practice, see Exercise 3.18.




First-order Condition

* Suppose f is differentiable (dom f is open and Vf exists at Vx € dom f),
then f is convex iff dom f is convex and forall x,y € dom f

fO) =2 fl)+Vf)"'(y —x)
* Review the proof in class: necessary and sufficiency
e Strict convexity: f(y) > f(x) + V()T (y —x),x =y
e Concave functions: f(y) < f(x) + V()" (y — x)

f(y)
f(x)+ Vi) (y —x)

a global underestimator

(z. f(x))

Proof of first-order condition: chap 3.1.3 with the property of restricting f to a line.



Second Order Condition

* Suppose f is twice differentiable (dom f is open and its Hessian
exists at Vx € dom f), then f is convex iff dom f is convex and for all
x,y € dom f

V2f(x) = 0 (positive semidefinite)
* Review the proof in class: necessary and sufficiency
e Strict convexity:V4f(x) > 0

e Concave functions: V2 f(x) < 0



Example of Convex Functions

e (Quadratic over linear function
2

X
f(x,y) =7,fory> 0

o [ 2x-
Its gradient Vf(x) = g; = _3;2
ayl 7
CI S R
2 —X
Hessian V2 f(x) = gff agzajcy = J%I—yxy xzy] > 0 = convex
Ldyox dy? |
Positive semidefinite? [ Y ] [ Y1 foranyu € R%, uf (vvDu = WTw)T(wTw) =
. —x —x] ’ y ) - -

||vTu||§ > 0.

More examples see chap. 3.1.5



Epigraph
* a-sublevel set of f: R"™ - R
Co,={xedomf]|f(x) < a}
sublevel sets of a convex function are convex for any value of a.
* Epigraph of f: R™ — R is defined as
epi f = {(x,t)|x Edom f, f(x) <t} € R"*1

X

* A function is convex iff its epigraph is a convex set.



Relation between convex sets and convex functions

* A function is convex iff its epigraph is a convex set.

* Consider a convex function f and x,y € dom f

.@ = f() +Vf ()" (v = )

epi f First order condition for convexity

* The hyperplane supports epi f at (x, f(x)), for any L
X

(y,t) Eepif =
VF) "y —x)+ f(x)—t <0

= [O] (B[t <0

normal vector of the
supporting hyperplane

Supporting hyperplane, derived
z, f(z)) from first order condition

(Vf(x),—1) 10



Recap: Supporting hyperplane theorem

supporting hyperplane to set ' at boundary point x(:

e e o o e e e o e e e e e o e e e e e e e e e ol

supporting hyperplane theorem: if (' is convex, then there exists a
supporting hyperplane at every boundary point of C

11
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