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Definition of Convex Functions
• A function !: #$ → # is convex if dom ! is a convex set and if for all
), + ∈ dom ! and 0 ≤ / ≤ 1

! /) + 1 − / + ≤ /! ) + 1 − / !(+)
• Review the proof in class: necessary and sufficiency
• Strict convexity:! /) + 1 − / + < /! ) + 1 − / ! + , ) ≠
+, 0 < / < 1
• Concave functions: −! is convex
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sometimes called
Jensen’s inequality

(/) + 1 − / +, 78(9) + : − 7 8(;))



Restriction of a convex function to a line
• A function !: #$ → # is convex if and only if the function &: # → #,

& ' = ! ) + '+ , dom & = ' ) + '+ ∈ dom !}
is a convex on its domain for ∀) ∈ dom !, + ∈ #$.
• The property can be useful to check the convexity of a function

Example: Prove ! 4 = log det 4 , dom ! = 9::$ is concave.
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Restriction of a convex function to a line
Example: Prove ! " = log det " , dom ! = ,--. is concave.
Consider an arbitrary line " = / + 12, where / ∈ ,--. , 2 ∈ ,.. Define 5 1 =

! / + 12 and restrict 5 to the interval values of 1 for / + 12 ≻ 0.We have

5 1 = log det(/ + 12) = log det(/
:
; < + 1/=

:
;2/=

:
; /:/;)

=?
@A:

.

log 1 + 1C@ + log det /

where C@ are the eigenvalues of /
=DE2/=

D
E. So we have

5F 1 =?
@A:

.
C@

1 + 1C@
, 5FF 1 = −?

@A:

.
C@
;

1 + 1C@ ;
≤ 0

5 1 is concave, hence ! " is concave. For more practice, see Exercise 3.18.
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Ø Properties from HW0
Ø det IB = det I det K
Ø det I = ∏@A:

. C@



First-order Condition
• Suppose ! is differentiable ("#$ ! is open and %! exists at ∀' ∈ "#$ !),
then ! is convex iff dom ! is convex and for all ', - ∈ "#$ !

! - ≥ ! ' + %! ' 0(- − ')
• Review the proof in class: necessary and sufficiency

• Strict convexity: ! - > ! ' + %! ' 0 - − ' , ' ≠ -
• Concave functions: ! - ≤ ! ' + %! ' 0(- − ')
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a global underestimator

Proof of first-order condition: chap 3.1.3 with the property of restricting 7 to a line. 



Second Order Condition
• Suppose ! is twice differentiable ("#$ ! is open and its Hessian
exists at ∀& ∈ "#$ !), then ! is convex iff dom ! is convex and for all
&, , ∈ "#$ !

-.! & ≽ 0 (positive semidefinite)
• Review the proof in class: necessary and sufficiency
• Strict convexity:-.! & ≻ 0
• Concave functions: -.! & ≼ 0

7



Example of Convex Functions
• Quadratic over linear function

! ", $ = "&
$ , for $ > 0

Its gradient ,! " =
-.
-/
-.
-0

=
&/
0
1/2
02

Hessian ,&! " =
-2.
-/2

-2.
-/-0

-2.
-0-/

-2.
-02

= &
03

$& −"$
−"$ "& ≽ 0 ⇒ convex

Positive semidefinite? $
−"

$
−"

7
, for any 8 ∈ :&, 8; <<; 8 = <;8 ; <;8 =

<;8 &
& ≥ 0.

8More examples see chap. 3.1.5



Epigraph
• !-sublevel set of ": $% → $

'( = * ∈ ,-. " " * ≤ !}
sublevel sets of a convex function are convex for any value of !.
• Epigraph of ": $% → $ is defined as

123 " = (*, 6) * ∈ ,-. ", " * ≤ 6} ⊆ 9:;<

• A function is convex iff its epigraph is a convex set. 9
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Relation between convex sets and convex functions
• A function is convex iff its epigraph is a convex set.
• Consider a convex function ! and ", $ ∈ &'( !

) ≥ ! $ ≥ ! " + ,! " -($ − ")

• The hyperplane supports epi 1 at (", ! " ), for any
$, ) ∈ 234 ! ⇒

,! " - $ − " + ! " − ) ≤ 0
⇒ ,! "

−1
- $

) − "
! " ≤ 0
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Supporting hyperplane, derived
from first order condition

First order condition for convexityepi 1
)

"

normal vector of the
supporting hyperplane



Recap: Supporting hyperplane theorem
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