W21 CSE 203B: Convex Set

Ting-Chou Lin 01/14/2021

- Affine and convex sets
- Example of convex sets
- Key properties of convex sets
- Proper cone, dual cone and generalized inequality

- Affine and convex sets
 - Definitions
 - Affine/convex/conic combinations
 - Implicit expression and explicit enumeration

Affine set

line through x_1 , x_2 : all points

$$x = \theta x_1 + (1 - \theta) x_2 \qquad (\theta \in \mathbf{R})$$
$$\theta = \underbrace{1.2}_{\theta = 1} \underbrace{x_1}_{\theta = 0.6}$$
$$\theta = 0.6$$
$$\underbrace{x_2}_{\theta = -0.2}$$

affine set: contains the line through any two distinct points in the set

example: solution set of linear equations $\{x \mid Ax = b\}$

(conversely, every affine set can be expressed as solution set of system of linear equations)

Convex set

line segment between x_1 and x_2 : all points

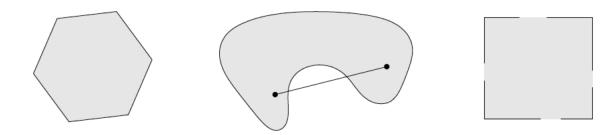
$$x = \theta x_1 + (1 - \theta) x_2$$

with $0 \le \theta \le 1$

convex set: contains line segment between any two points in the set

$$x_1, x_2 \in C, \quad 0 \le \theta \le 1 \implies \theta x_1 + (1 - \theta) x_2 \in C$$

examples (one convex, two nonconvex sets)



Convex combination and convex hull

convex combination of x_1, \ldots, x_k : any point x of the form

 $x = \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_k x_k$

with $\theta_1 + \cdots + \theta_k = 1$, $\theta_i \ge 0$

convex hull convC: set of all convex combinations of points in C

 $\operatorname{conv} C = \{\theta_1 x_1 + \dots + \theta_k x_k \mid x_i \in C, \ \theta_i \ge 0, \ i = 1, \dots, k, \ \theta_1 + \dots + \theta_k = 1\}.$ Explicit expression of convex hull

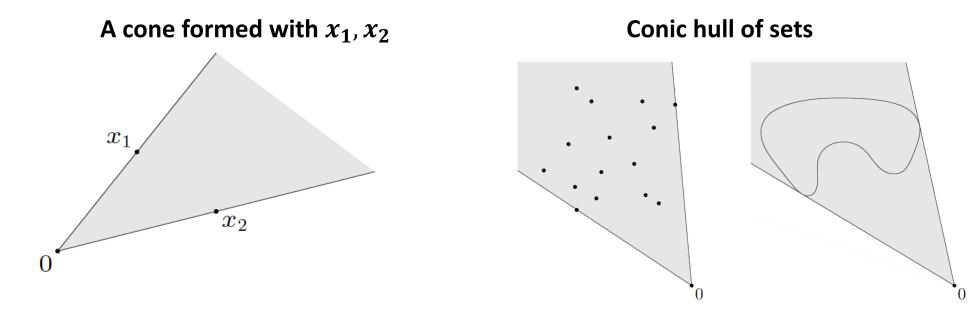
The convex hull is the **smallest** convex set that contains *C*

Cone

conic (nonnegative) combination of x_1 and x_2 : any point of the form

 $x = \theta_1 x_1 + \theta_2 x_2$

with $\theta_1 \ge 0$, $\theta_2 \ge 0$



convex cone: set that contains all conic combinations of points in the set

Set Specification via Implicit or Explicit Enumeration

Implicit Expression Explicit Enumeration

$$S_{I} = \{x | Ax \le b, x \in \mathbb{R}^{n}\}$$
$$S_{E} = \{Ax \mid x \in \mathbb{R}^{n}\}$$

Implicit Expression: Constraints Min $f_o(x)$ Subject to $Ax \le b, x \in \mathbb{R}^n$

Explicit Expression: Enumeration Min $f_o(Ax), x \in \mathbb{R}^n$

- Example of convex sets
 - Simple examples
 - Hyperplanes and halfspaces
 - Prove the convexity of sets with operations that preserve the convexity

Examples of convex sets

- Empty set, point, line.
- Norm ball: $\{x : ||x|| \le r\}$, for given norm $||\cdot||$, radius r.
- Hyperplane: $\{x : a^T x = b\}$, for given a, b.
- Halfspace: $\{x : a^T x \leq b\}$.
- Affine space: $\{x : Ax = b\}$, for given A, b.
- Polyhedron: $\{x : |Ax \le b\}$, where \le is interpreted componentwise. The set $\{x : Ax \le b, Cx = d\}$ is also a polyhedron.
- Simplex: special case of polyhedra, given by $conv\{x_0, ..., x_k\}$, where these points are affinely independent. The canonical example is the probability simplex,

$$\operatorname{conv}\{e_1, ..., e_n\} = \{w : w \ge 0, 1^T w = 1\}$$

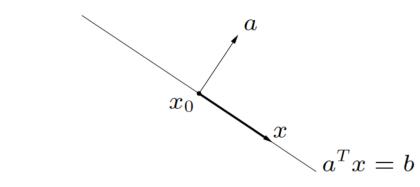
Exercises:

- 1) Prove the convexity of the sets using the definition.
- 2) The above convex sets are described with implicit expression, find the explicit enumeration.

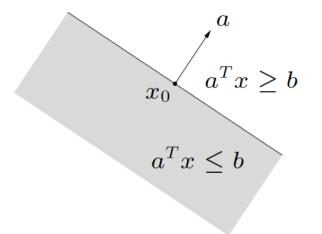
10

Hyperplane and Halfspaces

hyperplane: set of the form $\{x \mid a^T x = b\}$ $(a \neq 0)$



halfspace: set of the form $\{x \mid a^T x \leq b\}$ $(a \neq 0)$



- *a* is the normal vector
- hyperplanes are affine and convex; halfspaces are convex

Hyperplane and Halfspaces

- Example of plane in \mathbb{R}^3 : 3x + 4y + 6z = 12
- Implicit express of the hyperplane

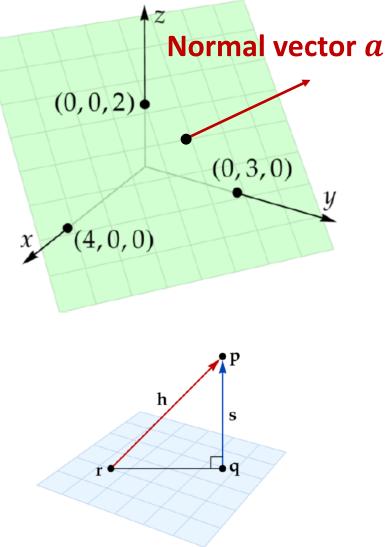
 ${x | a^T x = b}$ where $a^T = [3, 4, 6], b = 12$

• Let x_0 be any point in the hyperplane, then the expression becomes

$$\{x \mid a^T (x - x_0) = 0\} = x_0 + a^{\perp}$$

Q: Write the explicit expression of the hyperplane.

• Find the distance from a point p to the plane.



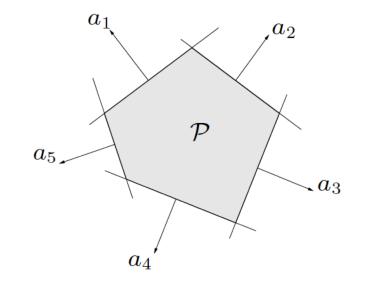
Prove the convexity of polyhedron

solution set of finitely many linear inequalities and equalities

$$Ax \leq b, \qquad Cx = d$$

Use the definition of convex set:

 $(A \in \mathbf{R}^{m \times n}, C \in \mathbf{R}^{p \times n}, \preceq \text{ is componentwise inequality})$



 $x_1, x_2 \in \mathcal{C}, 0 \leq \theta \leq 1$ $\Rightarrow \theta x_1 + (1 - \theta) x_2 \in \mathcal{C}$

Proof:

pick any two points in the polyhedron $x_1, x_2 \in P$, for $0 \le \theta \le 1$ is the point $\theta x_1 + (1 - \theta) x_2 \in P$?

polyhedron is intersection of finite number of halfspaces and hyperplanes

Positive semidefinite cone

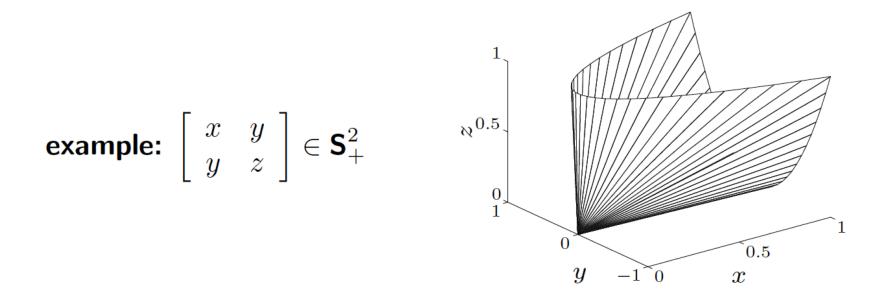
notation:

- \mathbf{S}^n is set of symmetric $n \times n$ matrices
- $\mathbf{S}_{+}^{n} = \{X \in \mathbf{S}^{n} \mid X \succeq 0\}$: positive semidefinite $n \times n$ matrices

$$X \in \mathbf{S}_{+}^{n} \quad \Longleftrightarrow \quad z^{T}Xz \geq 0 \text{ for all } z$$

 \mathbf{S}^n_+ is a convex cone

• $\mathbf{S}_{++}^n = \{X \in \mathbf{S}^n \mid X \succ 0\}$: positive definite $n \times n$ matrices



Intersections preserve convexity

- Polyhedron: intersection of halfspaces and hyperplanes (convex)
- ⇒ Is the intersection of a finite number of convex sets still convex?

prove with the definition of convex sets.

Operations that preserve convexity:

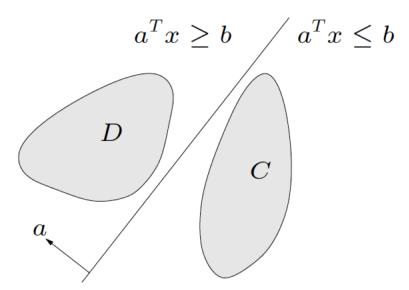
- Intersection
- Affine function
- Perspective functions
- Linear-fractional functions

- Key properties of convex sets
 - Separating hyperplane theorem
 - Supporting hyperplane theorem

Separating hyperplane theorem

if C and D are nonempty disjoint convex sets, there exist $a \neq 0$, b s.t.

 $a^T x \leq b \text{ for } x \in C, \qquad a^T x \geq b \text{ for } x \in D$



the hyperplane $\{x \mid a^T x = b\}$ separates C and D

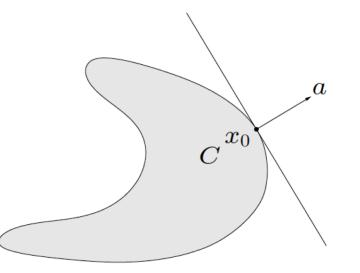
strict separation requires additional assumptions (e.g., C is closed, D is a singleton)

Supporting hyperplane theorem

supporting hyperplane to set C at boundary point x_0 :

$$\{x \mid a^T x = a^T x_0\}$$

where $a \neq 0$ and $a^T x \leq a^T x_0$ for all $x \in C$



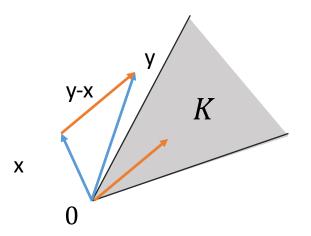
supporting hyperplane theorem: if C is convex, then there exists a supporting hyperplane at every boundary point of C

- Proper cone and generalized inequality
- Dual cone and generalized inequality

Generalized inequality

a convex cone $K \subseteq \mathbf{R}^n$ is a **proper cone** if

- K is closed (contains its boundary)
- *K* is solid (has nonempty interior)
- *K* is pointed (contains no line)



generalized inequality defined by a proper cone K:

$$x \preceq_K y \iff y - x \in K, \qquad x \prec_K y \iff y - x \in \operatorname{int} K$$

Review the properties of proper cones (chap 2.4.1) and generalized inequality (exercise 2.30).

Generalized inequality

examples

• componentwise inequality $(K = \mathbf{R}^n_+)$ **Nonnegative orthant**

 $x \preceq_{\mathbf{R}^n_+} y \iff x_i \le y_i, \quad i = 1, \dots, n$

• matrix inequality $(K = S_{+}^{n})$ **Positive semidefinite cone**

$$X \preceq_{\mathbf{S}^n_+} Y \iff Y - X$$
 positive semidefinite

these two types are so common that we drop the subscript in \leq_K

properties: many properties of \preceq_K are similar to \leq on **R**, *e.g.*, *a partial ordering on* \mathbb{R}^n analogy to ordinary $x \preceq_K y, \quad u \preceq_K v \implies x + u \preceq_K y + v$ inequality

Minimum and minimal element

 \preceq_K is not in general a *linear ordering*: we can have $x \not\preceq_K y$ and $y \not\preceq_K x$

 $x \in S$ is the minimum element of S with respect to \preceq_K if

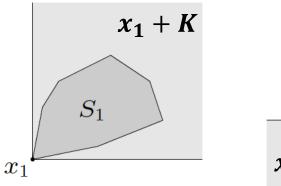
$$y \in S \implies x \preceq_K y \qquad \Longleftrightarrow S \subseteq x + K$$

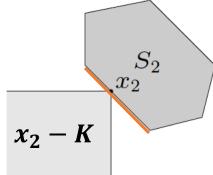
 $x \in S$ is a minimal element of S with respect to \preceq_K if

$$y \in S, \quad y \preceq_K x \implies y = x \qquad \iff (\mathbf{x} - \mathbf{K}) \cap \mathbf{S} = \{\mathbf{x}\}$$

example $(K = \mathbf{R}^2_+)$

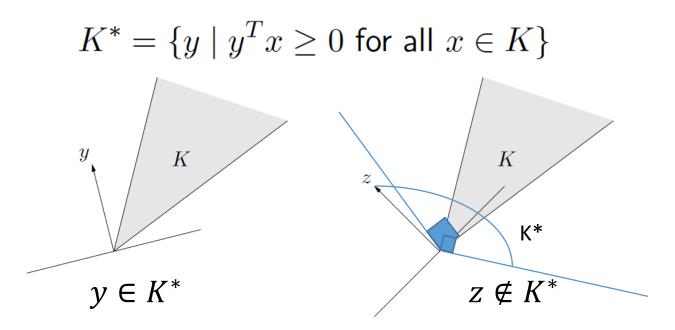
 x_1 is the minimum element of S_1 x_2 is a minimal element of S_2





Dual cones

dual cone of a cone K:



Find the **dual cones** of

- Subspace $V \in \mathbf{R}^n$
- Nonnegative orthant $K = \mathbf{R}^n_+$
- Positive semidefinite cone $K = S^n_+$

Review the properties of dual cones (exercise 2.31).

reference

[1] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, http://stanford.edu/ boyd/cvxbook/, 2004.