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Convex Optimization Discussion - Week 6
(Convex Optimization Problems)

Chester Holtz

Based on slides by Prof. Stephen Boyd
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Overview

▶ Standard form
▶ Classification and hierarchy of convex problems
▶ Graph embedding (programming assignment)
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Optimization problems in standard form

min f0(x)
fi(x) ≤ 0, i = 1, . . . , m
hj(x) = 0, j = 1, . . . , p

▶ x ∈ Rn is the optimization variable
▶ f0 : Rn → R is the objective
▶ fi , hj : Rn → R define the explicit inequality and equality

constraints
▶ Unconstrained problem with implicit constraints:

min f0(x) = −
∑m

i log(bi − a⊤
i x)
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Optimization problems in standard form

min f0(x)
fi(x) ≤ 0, i = 1, . . . , m
hj(x) = 0, j = 1, . . . , p

Solution:

p∗ = inf{f0(x)|fi(x) ≤ 0, hj(x)}

▶ p∗ = ∞ =⇒ infeasible (no solution)
▶ p∗ = −∞ =⇒ unbounded
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Optimization problems in standard form

min f0(x)
fi(x) ≤ 0, i = 1, . . . , m
hj(x) = 0, j = 1, . . . , p

▶ domain of p: D =
⋂m

i=0 dom fi ∩
⋂p

j=0 dom hj
▶ x feasible if x ∈ dom f0 and satisfies the constraints
▶ x optimal if f0(x) = p∗ (note x may not be unique)
▶ x locally optimal if feasible & f (x) ≤ f (z),

||z − x || ≤ R

for some R > 0
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Convex optimization problems

Any locally optimal point of a convex problem is (globally) optimal

min f0(x)
fi(x) ≤ 0, i = 1, . . . , m
hj(x) = 0, j = 1, . . . , p

▶ fi , i = 0, . . . m are convex, hj are affine.
▶ Intersection of the constraints: feasible set is convex

min f0(x)
fi(x) ≤ 0, i = 1, . . . , m
Ax = b, A ∈ Rp×n
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Optimality criteria for differentiable f0 (from lecture)

General idea
x is feasible and the negative gradient (descent direction) of f0 at
x is more strongly correlated with x compared to any other y :

∇f0(x)⊤(y − x) ≥ 0

Unconstrained problem: min f0(x)
x ∈ dom f0 and ∇f0(x) = 0

Equality constrained problem: min f0(x) s.t. Ax = n
Ax = b ∇f0(x) + A⊤ν = 0 for some ν

Minimization over nonnegative orthant: min f0(x) s.t. x ≥ 0

x ≥ 0 and
{

∇f0(x)i ≥ 0, xi = 0
∇f0(x)i = 0, xi > 0
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Example 4.5: unconstrained quadratic optimization

f0(x) = (1/2)x⊤Px + q⊤x + r , P ∈ Sn
++ (making f0 convex)

Necessary and sufficient conditions on x∗: ∇f0(x) = Px + q = 0

▶ q ̸= R(P): f0 is unbounded below
▶ P > 0 (f0 strictly convex): x∗ = −P−1q (unique)
▶ P is singular, but q ∈ R(P): x∗ ∈ −P†q + N (P)
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Hierarchy and classification of convex opt. problems

Different classes of convex optimization problems.
▶ Linear optimization
▶ Quadratic optimization
▶ Geometric programming
▶ Semidefinite programming
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Linear program (LP)

min c⊤x + d
Gx ≤ h ≤ 0, G ∈ Rm×n

Ax = b, A ∈ Rp×n

▶ convex problem with affine objective and constraint functions
▶ feasible set is a polytope
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Linear program (LP) shortest path example
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x

∑
i ,j∈E

wijxij

s.t.
∑

j
xij −

∑
j

xji =


1, i = s
−1, i = t
0, otherwise

x ≥ 0
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Quadratic program (QP)

min 1/2x⊤Px + q⊤x + r
Gx ≤ h ≤ 0, G ∈ Rm×n

Ax = b, A ∈ Rp×n

▶ P ∈ Sn
+, so objective is convex quadratic

▶ minimize a convex quadratic function over a polytope
▶ LP is a subset of QP
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Quadratic program (QP) examples
Least-squares

min ||Ax − b||22

▶ analytical solution x∗ = A†b
▶ can add linear constraints, e.g. l ≤ x ≤ u

Sparsemax1

Euclidean projection onto the Unit Simplex (map vectors to
probability distributions)

min ||x − y ||22
s.t. 1⊤y = 1, 0 ≤ y ≤ 1

1Martins & Astudillo, From Softmax to Sparsemax: A Sparse Model of Attention and Multi-Label Classification

https://arxiv.org/abs/1602.02068
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Quadratically constrained quadratic program (QCQP)

min 1/2x⊤P0x + q⊤
0 x + r0

1/2x⊤Pix + q⊤
i x + ri , i = 1, . . . , m

Ax = b, A ∈ Rp×n

▶ Pi ∈ Sn
+, so objective and constraints convex quadratic

▶ if P1, . . . , Pm ∈ Sn
++, feasible region is an intersection of m

ellipsoids and an affine set
▶ QP is a subset of QCQP
▶ Example: graph embedding (homework)
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Second-order cone program (SOCP)

min c⊤x
||Pix + qi || ≤ d⊤

i xri , i = 1, . . . , m
Ax = b, A ∈ Rp×n

▶ Inequalities are second-order cone (SOC) constraints:

(Pix + qi , d⊤
i + ri) ∈ second-order cone in Rni +1

▶ more general than QCQP and LP (can show QCQP ⊂ SOCP.)
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Semidefinite program (SDP)

min c⊤x
x1P1 + x2P2 + . . . + xnPn + G ≤ 0
Ax = b, A ∈ Rp×n

▶ Set of semidefinite matrices is a convex set (a cone)
▶ Linear matrix inequality (LMI) constraint
▶ Show LP and SOCP reduce to SDPs (via schur complement)
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Programming assignment (graph embedding)

1

2

4

3

▶ G = (V , E ), |V | = n = 4, |E | = 5
▶ Laplacian L = D − A

A =


0 1 1 1
1 0 0 1
1 0 0 1
1 1 1 0

 D =


3 0 0 0
0 2 0 0
0 0 2 0
0 0 0 3

 L =


3 −1 −1 −1

−1 2 0 −1
−1 0 2 −1
−1 −1 −1 3
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Some properties of the Laplacian

▶ Symmetric: real eigenvalues, eigenspaces are mutually
orthogonal

▶ Positive semidefinite: nonnegative eigenvalues
▶ Rows sum to zero: singular (at least one zero eigenvalue with

unity eigenvector)

▶ x⊤Lx =
∑

i ,j∈E (xi − xj)2 (show this on the hw)
▶ Rayleigh quotient: ϕ(x) = x⊤Lx

x⊤x
▶ Variational characterization of eigenvalues:

λ1 = min
x

ϕ(x) λ1 ≤ λi ≤ . . . ≤ λn
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Programming assignment

Find coordinates for v ∈ V such that:
1. Connected nodes are close together
2. Center embedding about an origin
3. We avoid trivial solutions (?)

min
x

x⊤Lx = min
x

∑
i ,j∈E

(xi − xj)2 (1.)

1⊤x = 0, x⊤x = c (2. & 3.)

Is this problem convex?
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Programming assignment

Two additions:

1. Convex relaxation

min
x

x⊤Lx = min
x

∑
i ,j∈E

(xi − xj)2

x⊤x ≤ c

2. Addition of fixed nodes
x = [x1 : x2]⊤
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Programming assignment

Code walkthrough
https://colab.research.google.com/drive/1apgxNJGN1E4_
W6awYbbhNxTyL0VvvMVH?usp=sharing

https://colab.research.google.com/drive/1apgxNJGN1E4_W6awYbbhNxTyL0VvvMVH?usp=sharing
https://colab.research.google.com/drive/1apgxNJGN1E4_W6awYbbhNxTyL0VvvMVH?usp=sharing
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More examples (if time)

4.2 (logarithmic barrier), 4.3 (QP), 4.8 (LPs), 4.11 (norms), 4.12
(network flow), 4.22 (QCQP), 4.40 (SDPs)
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