Convex Optimization Discussion - Week 6
(Convex Optimization Problems)

Chester Holtz

Based on slides by Prof. Stephen Boyd



Overview

» Standard form
» Classification and hierarchy of convex problems

» Graph embedding (programming assignment)



Optimization problems in standard form

min fo(x)
filx)<0, i=1,...,m
hi(x)=0, j=1,...,p

> x € R" is the optimization variable

v

fo : R" — R is the objective

» fi,h; : R" — R define the explicit inequality and equality
constraints

» Unconstrained problem with implicit constraints:
min fy(x) = — S log(b; — a; x)



Optimization problems in standard form

min fp(x)
f;(X) S 07 I — b )
hi(x)=0, j=1,...,p

Solution:

p" = inf{fo(x)|fi(x) <0, h(x)}

» p* =00 = infeasible (no solution)
> p*=—00 = unbounded



Optimization problems in standard form

> domain of p: D = NZydom f; N _, dom h;

» x feasible if x € dom fy and satisfies the constraints
> x optimal if f(x) = p* (note x may not be unique)
» x locally optimal if feasible & f(x) < f(z),

lz=x|| <R

for some R >0



Convex optimization problems

Any locally optimal point of a convex problem is (globally) optimal

min fp(x)
filx) <0, i=1,....m
hi(x)=0, j=1,...,p

» fi,i=0,...m are convex, h; are affine.

» Intersection of the constraints: feasible set is convex

min fo(x)
filx)<0, i=1,...,m
Ax = b, A € RP*"



Optimality criteria for differentiable f; (from lecture)

General idea
x is feasible and the negative gradient (descent direction) of fy at
x is more strongly correlated with x compared to any other y:

Vfo(x)T(y —x)>0

Unconstrained problem: min fy(x)
x € dom fy and Vfy(x) =0

Equality constrained problem: min fy(x) s.t. Ax =n
Ax=b Vfy(x)+ ATv =0 for some v

Minimization over nonnegative orthant: min fo(x) s.t. x >0
Vfo(X),' >0, x;i=0

x > 0 and
{Vfo(x),- =0, x>0



Example 4.5: unconstrained quadratic optimization

fo(x) = (1/2)x"Px+q x+r, P € ST, (making fy convex)

Necessary and sufficient conditions on x*: Vfy(x) = Px+ ¢ =0

» g # R(P): fy is unbounded below
» P > 0 (fy strictly convex): x* = —P~1q (unique)
» P is singular, but g € R(P): x* € —PTq + N(P)



Hierarchy and classification of convex opt. problems

Different classes of convex optimization problems.
» Linear optimization
» Quadratic optimization
» Geometric programming

» Semidefinite programming



Linear program (LP)

minc' x + d
Gx < h<0,GeR™"
Ax = b, A € RP*"

» convex problem with affine objective and constraint functions
> feasible set is a polytope



Linear program (LP) shortest path example

min Z Wi X
v ijXij

ijeE
1, i=s
s.t. ZXU—ZXJ;Z -1, i=t
J j 0, otherwise

x>0




Quadratic program (QP)

minl/2x Px+q x4+ r
Gx < h<0,GecR™"
Ax = b, A € RP*"

> P e S, so objective is convex quadratic

> minimize a convex quadratic function over a polytope
» LP is a subset of QP



Quadratic program (QP) examples

Least-squares

min ||Ax — b|[3

» analytical solution x* = Afb

P can add linear constraints, e.g. | < x<u

Sparsemax?

Euclidean projection onto the Unit Simplex (map vectors to
probability distributions)

min ||x — y|[3
st.1'y=1, 0<y<1

"Martins & Astudillo, From Softmax to Sparsemax: A Sparse Model of Attention and Multi-Label Classification


https://arxiv.org/abs/1602.02068

Quadratically constrained quadratic program (QCQP)

min1/2x " Pox + q(—)rx—i— ro
1/2x"Pix+q'x+r, i=1,....m
Ax = b, A € RP*"

» P; € S, so objective and constraints convex quadratic

> if P,..., Py e ST, feasible region is an intersection of m
ellipsoids and an affine set

» QP is a subset of QCQP
» Example: graph embedding (homework)



Second-order cone program (SOCP)

minc' x

[|Pix + qi|| < d,-Txr,-, i=1,...,m
Ax = b, A € RP*"

» Inequalities are second-order cone (SOC) constraints:
T H n,-+1
(Pix + qi,d; + ri) € second-order cone in R

» more general than QCQP and LP (can show QCQP C SOCP.)



Semidefinite program (SDP)

minc' x

x1P1+xP+ ...+ x,P,+ G <0
Ax = b, A € RP*"

» Set of semidefinite matrices is a convex set (a cone)
» Linear matrix inequality (LMI) constraint
» Show LP and SOCP reduce to SDPs (via schur complement)



Programming assignment (graph embedding)

> G=(V,E), [V|=n=4,|E|=5

> Laplacian L=D - A

0111 3000 3 -1 -1 -1
1 001 0200 -1 2 0 -1
A= 1 001 b= 00 20 L= -1 0 2 -1
1110 0 00 3 -1 -1 -1 3



Some properties of the Laplacian

» Symmetric: real eigenvalues, eigenspaces are mutually
orthogonal

P> Positive semidefinite: nonnegative eigenvalues

» Rows sum to zero: singular (at least one zero eigenvalue with
unity eigenvector)

> xlx = Sijee(xi— xj)? (show this on the hw)

» Rayleigh quotient: ¢(x) = x_Lx

x T x

» Variational characterization of eigenvalues:

)\1:mxin¢(x) )\1§)\,§§)\n



Programming assignment

Find coordinates for v € V such that:
1. Connected nodes are close together
2. Center embedding about an origin

3. We avoid trivial solutions (?)

T . 2
min x Lx = min Z (xi — xj)
ijEE

T

lTx:07 X X=¢c

Is this problem convex?

(1)

(2. & 3.)



Programming assignment

Two additions:

1. Convex relaxation

T . )
min x Lx = min Z(x,

ijeE

xTxgc

2. Addition of fixed nodes
x =[x :x]"



Programming assignment

Code walkthrough

https://colab.research.google.com/drive/1apgxNIGN1E4_
W6awYbbhNxTyLOVvvMVH?usp=sharing


https://colab.research.google.com/drive/1apgxNJGN1E4_W6awYbbhNxTyL0VvvMVH?usp=sharing
https://colab.research.google.com/drive/1apgxNJGN1E4_W6awYbbhNxTyL0VvvMVH?usp=sharing

More examples (if time)

4.2 (logarithmic barrier), 4.3 (QP), 4.8 (LPs), 4.11 (norms), 4.12
(network flow), 4.22 (QCQP), 4.40 (SDPs)
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