Convex Optimization Discussion - Week 6 (Convex Optimization Problems)

Chester Holtz

Based on slides by Prof. Stephen Boyd

Overview

- Standard form
- Classification and hierarchy of convex problems
- Graph embedding (programming assignment)

Optimization problems in standard form

$$
\begin{aligned}
& \min f_{0}(x) \\
& f_{i}(x) \leq 0, \quad i=1, \ldots, m \\
& h_{j}(x)=0, \quad j=1, \ldots, p
\end{aligned}
$$

- $x \in \mathbb{R}^{n}$ is the optimization variable
- $f_{0}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is the objective
- $f_{i}, h_{j}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ define the explicit inequality and equality constraints
- Unconstrained problem with implicit constraints: $\min f_{0}(x)=-\sum_{i}^{m} \log \left(b_{i}-a_{i}^{\top} x\right)$

Optimization problems in standard form

$$
\begin{aligned}
& \min f_{0}(x) \\
& f_{i}(x) \leq 0, \quad i=1, \ldots, m \\
& h_{j}(x)=0, \quad j=1, \ldots, p
\end{aligned}
$$

Solution:

$$
p^{*}=\inf \left\{f_{0}(x) \mid f_{i}(x) \leq 0, h_{j}(x)\right\}
$$

- $p^{*}=\infty \Longrightarrow$ infeasible (no solution)
- $p^{*}=-\infty \Longrightarrow$ unbounded

Optimization problems in standard form

$$
\begin{aligned}
& \min f_{0}(x) \\
& f_{i}(x) \leq 0, \quad i=1, \ldots, m \\
& h_{j}(x)=0, \quad j=1, \ldots, p
\end{aligned}
$$

- domain of $\mathrm{p}: \mathcal{D}=\bigcap_{i=0}^{m} \operatorname{dom} f_{i} \cap \bigcap_{j=0}^{p} \operatorname{dom} h_{j}$
- x feasible if $x \in \operatorname{dom} f_{0}$ and satisfies the constraints
- x optimal if $f_{0}(x)=p^{*}$ (note x may not be unique)
- x locally optimal if feasible \& $f(x) \leq f(z)$,

$$
\|z-x\| \leq R
$$

for some $R>0$

Convex optimization problems

Any locally optimal point of a convex problem is (globally) optimal

$$
\begin{aligned}
& \min f_{0}(x) \\
& f_{i}(x) \leq 0, \quad i=1, \ldots, m \\
& h_{j}(x)=0, \quad j=1, \ldots, p
\end{aligned}
$$

- $f_{i}, i=0, \ldots m$ are convex, h_{j} are affine.
- Intersection of the constraints: feasible set is convex

$$
\begin{aligned}
& \min f_{0}(x) \\
& f_{i}(x) \leq 0, \quad i=1, \ldots, m \\
& A x=b, A \in \mathbb{R}^{p \times n}
\end{aligned}
$$

Optimality criteria for differentiable f_{0} (from lecture)

General idea
x is feasible and the negative gradient (descent direction) of f_{0} at x is more strongly correlated with x compared to any other y :

$$
\nabla f_{0}(x)^{\top}(y-x) \geq 0
$$

Unconstrained problem: $\min f_{0}(x)$
$x \in \operatorname{dom} f_{0}$ and $\nabla f_{0}(x)=0$
Equality constrained problem: $\min f_{0}(x)$ s.t. $A x=n$
$A x=b \quad \nabla f_{0}(x)+A^{\top} \nu=0$ for some ν
Minimization over nonnegative orthant: $\min f_{0}(x)$ s.t. $x \geq 0$
$x \geq 0$ and $\begin{cases}\nabla f_{0}(x)_{i} \geq 0, & x_{i}=0 \\ \nabla f_{0}(x)_{i}=0, & x_{i}>0\end{cases}$

Example 4.5: unconstrained quadratic optimization

$f_{0}(x)=(1 / 2) x^{\top} P x+q^{\top} x+r, P \in S_{++}^{n}$ (making f_{0} convex)

Necessary and sufficient conditions on $x^{*}: \nabla f_{0}(x)=P x+q=0$

- $q \neq \mathcal{R}(P): f_{0}$ is unbounded below
- $P>0\left(f_{0}\right.$ strictly convex): $x^{*}=-P^{-1} q$ (unique)
- P is singular, but $q \in \mathcal{R}(P): x^{*} \in-P^{\dagger} q+\mathcal{N}(P)$

Hierarchy and classification of convex opt. problems

Different classes of convex optimization problems.

- Linear optimization
- Quadratic optimization
- Geometric programming
- Semidefinite programming

Linear program (LP)

$$
\begin{aligned}
& \min c^{\top} x+d \\
& G x \leq h \leq 0, G \in \mathbb{R}^{m \times n} \\
& A x=b, A \in \mathbb{R}^{p \times n}
\end{aligned}
$$

- convex problem with affine objective and constraint functions
- feasible set is a polytope

Linear program (LP) shortest path example

$$
\begin{aligned}
& \min _{x} \sum_{i, j \in E} w_{i j} x_{i j} \\
& \text { s.t. } \\
& \quad \sum_{j} x_{i j}-\sum_{j} x_{j i}= \begin{cases}1, & i=s \\
-1, & i=t \\
0, & \text { otherwise }\end{cases} \\
& \quad x \geq 0
\end{aligned}
$$

Quadratic program (QP)

$$
\begin{aligned}
& \min 1 / 2 x^{\top} P x+q^{\top} x+r \\
& G x \leq h \leq 0, G \in \mathbb{R}^{m \times n} \\
& A x=b, A \in \mathbb{R}^{p \times n}
\end{aligned}
$$

- $P \in S_{+}^{n}$, so objective is convex quadratic
- minimize a convex quadratic function over a polytope
- LP is a subset of QP

Quadratic program (QP) examples

Least-squares

$$
\min \|A x-b\|_{2}^{2}
$$

- analytical solution $x^{*}=A^{\dagger} b$
- can add linear constraints, e.g. $I \leq x \leq u$

Sparsemax ${ }^{1}$

Euclidean projection onto the Unit Simplex (map vectors to probability distributions)

$$
\begin{aligned}
& \min \|x-y\|_{2}^{2} \\
& \text { s.t. } 1^{\top} y=1, \quad 0 \leq y \leq 1
\end{aligned}
$$

[^0]
Quadratically constrained quadratic program (QCQP)

$$
\begin{aligned}
& \min 1 / 2 x^{\top} P_{0} x+q_{0}^{\top} x+r_{0} \\
& 1 / 2 x^{\top} P_{i} x+q_{i}^{\top} x+r_{i}, \quad i=1, \ldots, m \\
& A x=b, A \in \mathbb{R}^{p \times n}
\end{aligned}
$$

- $P_{i} \in S_{+}^{n}$, so objective and constraints convex quadratic
- if $P_{1}, \ldots, P_{m} \in S_{++}^{n}$, feasible region is an intersection of m ellipsoids and an affine set
- QP is a subset of QCQP
- Example: graph embedding (homework)

Second-order cone program (SOCP)

$$
\begin{aligned}
& \min c^{\top} x \\
& \left\|P_{i} x+q_{i}\right\| \leq d_{i}^{\top} x r_{i}, \quad i=1, \ldots, m \\
& A x=b, A \in \mathbb{R}^{p \times n}
\end{aligned}
$$

- Inequalities are second-order cone (SOC) constraints:

$$
\left(P_{i} x+q_{i}, d_{i}^{\top}+r_{i}\right) \in \text { second-order cone in } \mathbb{R}^{n_{i}+1}
$$

- more general than QCQP and LP (can show QCQP \subset SOCP.)

Semidefinite program (SDP)

$$
\begin{aligned}
& \min c^{\top} x \\
& x_{1} P_{1}+x_{2} P_{2}+\ldots+x_{n} P_{n}+G \leq 0 \\
& A x=b, A \in \mathbb{R}^{p \times n}
\end{aligned}
$$

- Set of semidefinite matrices is a convex set (a cone)
- Linear matrix inequality (LMI) constraint
- Show LP and SOCP reduce to SDPs (via schur complement)

Programming assignment (graph embedding)

- $G=(V, E),|V|=n=4,|E|=5$
- Laplacian $L=D-A$

$$
A=\left[\begin{array}{llll}
0 & 1 & 1 & 1 \\
1 & 0 & 0 & 1 \\
1 & 0 & 0 & 1 \\
1 & 1 & 1 & 0
\end{array}\right] \quad D=\left[\begin{array}{llll}
3 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 3
\end{array}\right] L=\left[\begin{array}{cccc}
3 & -1 & -1 & -1 \\
-1 & 2 & 0 & -1 \\
-1 & 0 & 2 & -1 \\
-1 & -1 & -1 & 3
\end{array}\right]
$$

Some properties of the Laplacian

- Symmetric: real eigenvalues, eigenspaces are mutually orthogonal
- Positive semidefinite: nonnegative eigenvalues
- Rows sum to zero: singular (at least one zero eigenvalue with unity eigenvector)
- $x^{\top} L x=\sum_{i, j \in E}\left(x_{i}-x_{j}\right)^{2}$ (show this on the hw)
- Rayleigh quotient: $\phi(x)=\frac{x^{\top} L x}{x^{\top} x}$
- Variational characterization of eigenvalues:

$$
\lambda_{1}=\min _{x} \phi(x) \quad \lambda_{1} \leq \lambda_{i} \leq \ldots \leq \lambda_{n}
$$

Programming assignment

Find coordinates for $v \in V$ such that:

1. Connected nodes are close together
2. Center embedding about an origin
3. We avoid trivial solutions (?)

$$
\begin{align*}
& \min _{x} x^{\top} L x=\min _{x} \sum_{i, j \in E}\left(x_{i}-x_{j}\right)^{2} \tag{1.}\\
& 1^{\top} x=0, \quad x^{\top} x=c
\end{align*}
$$

(2. \& 3.)

Is this problem convex?

Programming assignment

Two additions:

1. Convex relaxation

$$
\begin{aligned}
& \min _{x} x^{\top} L x=\min _{x} \sum_{i, j \in E}\left(x_{i}-x_{j}\right)^{2} \\
& x^{\top} x \leq c
\end{aligned}
$$

2. Addition of fixed nodes
$x=\left[x_{1}: x_{2}\right]^{\top}$

Programming assignment

Code walkthrough
https://colab.research.google.com/drive/1apgxNJGN1E4_ W6awYbbhNxTyLOVvvMVH?usp=sharing

More examples (if time)

4.2 (logarithmic barrier), 4.3 (QP), 4.8 (LPs), 4.11 (norms), 4.12 (network flow), 4.22 (QCQP), 4.40 (SDPs)

[^0]: ${ }^{1}$ Martins \& Astudillo, From Softmax to Sparsemax: A Sparse Model of Attention and Multi-Label Classification

