CSE 203B: Convex Optimization Discussion Week 3

Isabella Liu 1/21/2022

- Qualification & Enumeration
- Dual Cone
- Support Vector Machine

- Qualification & Enumeration
- Dual Cone
- Support Vector Machine

Implicit/qualification expression: $\{x | Ax \le b, x \in \mathbb{R}^n\}$

Example:

Explicit/enumeration expression: $\{ U\theta | 1^T \theta = 1, \theta \in R^m_+ \}$ Implicit/qualification expression: $\{x | Ax \le b, x \in \mathbb{R}^n\}$ Explicit/enumeration expression: $\{ U\theta | 1^T \theta = 1, \theta \in R^m_+ \}$

Question: The dimension m of $\theta \in R^m_+$ is determined by?

The number of extreme points in{ $x | Ax \leq b, x \in \mathbb{R}^n$ }

•

- HW 1.1 how to find extreme points in a linear system of inequalities
 - Extreme points: Let $C \subseteq \mathbb{R}^n$ be a convex set. For a $z \in C$, it is an extreme point of C if there is no distinct $x, y \in C$ and $\lambda \in (0,1)$ such that $z = (1 \lambda)x + \lambda y$. (always be the endpoint if in a line segment inside C)

Qualification & Enumeration

•

- HW 1.1 how to find extreme points in a linear system of inequalities
 - Set n of the m + n inequalities to equality (by turns) and solve the corresponding $n \times n$ system
 - Check whether the solution satisfies the remaining inequalities, discard if doesn't
 - Note $x \in R_+^6$, so $x_i \ge 0$ are also inequality conditions

- Qualification & Enumeration
- Dual Cone
- Support Vector Machine

• Let *K* be a cone, the set

$$K^* = \{ y \mid x^T y \ge 0, \forall x \in K \}$$

is called dual cone of K, K^* is **always convex**, even when the original K is not.

• Example: **Self-dual**, the cone R_+^n is its own dual

$$x^T y \ge 0, \forall x \ge 0 \Leftrightarrow y \ge 0$$

• Example: Dual cone of a non-convex set is convex.

$$C^* = \{ y \mid \langle y, x \rangle \ge 0, \forall x \in C \}$$

• HW 1.3

Derive the dual cone of the set $\{x | Ax \leq 0, x \in \mathbb{R}^6\}$

for any y in the dual cone, there should be $y^T x \ge 0, \forall x \in \{x | Ax \le 0, x \in R^6\}$

- Qualification & Enumeration
- Dual Cone
- Support Vector Machine (SVM)

 Given a dataset of n points in form (x₁, y₁), ..., (x_n, y_n) where class labels y_i are either 1 or -1. The SVM tries to find the "maximum-margin hyperplane" that divides the points into correct groups.

Geometrically, the distance between hyperplane $w^T x - b = 1$ and $w^T x - b = -1$ is $\frac{2}{||w||}$, so maximize it is equivalent to minimize ||w||

 In hard-margin SVM, the decision boundary is only affected by the support vectors

Check out this live demo

- Sometimes data are not linearly separable ☺
 - Soft-margin SVM: Add a loss function to penalize points on the wrong side

$$\max(0, 1 - y_i(w^T x_i - b))$$

if a point is on the wrong side, the loss is proportional to its distance to the margin. Minimize:

$$\lambda \|\mathbf{w}\|^2 + \left[rac{1}{n}\sum_{i=1}^n \maxig(0,1-y_i(\mathbf{w}^T\mathbf{x}_i-b)ig)
ight]$$

- Sometimes data are not linearly separable \mathfrak{S}
 - Kernel Trick
 - The idea of mapping the data to a higher dimensional space
 - Kernel functions is computational efficient
 - Common kernel functions:
 - Polynomial kernel

 $k(\mathbf{x},\mathbf{y}) = (\mathbf{x}^T\mathbf{y} + 1)^d$

Gaussian kernel

$$k(\mathbf{x},\mathbf{y})=e^{-\gamma \left\|\mathbf{x}-\mathbf{y}
ight\|^{2}}, \gamma>0$$

- Multiclass classification using SVM
 - One-to-one: use a binary SVM for each pair of classes
 - One-to-rest: separate a class and the rest of points

One-to-one

One-to-rest https://www.baeldung.com/cs/svm-multiclass-classification

Thank you