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Affine set

• A collection of points  and   induces the 

affine set 


• E.g.    generates the line through them

x1, ⋯, xn θ1, θ2, ⋯, θn ∈ ℝ |
n

∑
i=1

θi = 1

θ1x1 + ⋯ + θnxn

x1 ≠ x2 ∈ ℝ2



Cone
• A collection of points  and   induces the cone




• The coefficients are positive unlike for an affine set, and don’t sum to 


• E.g. Any  generates a cone as shown in the figure

x1, ⋯, xn θ1, θ2, ⋯, θn ∈ ℝ+

θ1x1 + ⋯ + θnxn

1

x1 ≠ x2 ∈ ℝ2



Cone
• E.g. II Non collinear  induces a pyramid conex1, x2, x3 ∈ ℝ3



Dual Cone 
• Dual cone of a cone  is defined as .


•  is also a cone (in fact it’s a cone for any set )


• For any  for some 


• Clearly for any 


• Therefore 

K K* = {y |yTx ≥ 0,∀x ∈ K}

K* K

x1, x2 ∈ K*,  let z = θ1x1 + θ2x2 θ1, θ2 ≥ 0

y ∈ K, yTz = θ1yTx + θ2yTx ≥ 0

z ∈ K*



Dual Cone 
• Consider the dual of 


• Clearly  since any  has a positive inner product with any 
 by definition of 


• In fact for a closed convex , . Relies on the separation theorem

K*,  i.e. (K*)* = {y |yTx ≥ 0∀x ∈ K*}

K ⊆ (K*)* y ∈ K
x ∈ K* K*

K (K*)* = K



Convex set
•  is said to be convex if for any 




• Can be more complicated to specify than an affine set or a cone stated in 
terms of ‘boundary’ points


• E.g. The purple region is a valid convex set  


• Affine set/cone  convex set but not vice versa

X
x1, x2 ∈ X,  and 0 ≤ θ ≤ 1, θx1 + (1 − θ)x2 ∈ X

X

⟹



Intersections of convex sets 
• Consider convex sets  for some finite . Then  is 

also convex


• Consider any . We need to show that  for 
all 


• Clearly , and so is 


• Thus 


• Shows that an optimization region with many convex constraints is convex

C1, ⋯, Cn n C ≜ C1 ∩ ⋯ ∩ Cn

x1, x2 ∈ C y = θx1 + (1 − θ)x2 ∈ C
0 ≤ θ ≤ 1

x1, x2 ∈ Ci ∀i ∈ {1,⋯, n} y ∈ Ci ∀i ∈ {1,⋯, n}

y ∈ C



Hyperplanes
• A hyperplane is an affine set whose dimension is one less than that of its 

ambient space


• In general a set of the form  where  correspond to a 
point and a subspace 


• E.g. the plane  in . The original definition of ‘hyperplane’ 
is from the 3 dimensional case


• It’s a convex set as it’s affine (as affine  convex)

{a + u : u ∈ U} a, U

x1 + x2 + 3x3 = 5 ℝ3

⟹



Hyperplanes and regions
• Consider . Given 


• We’d like to evaluate the maximum number of disjoint regions separated by 
the hyperplanes

ℝn aix = bi,  for i = 1,2,…, p, x ∈ ℝn .



Illustrating n = 1, 2
• A hyperplane is a point for 


•  points on a line segment. Clearly  regions


• E.g.


• Hyperplane in  consists of lines

n = 1

p p + 1

ℝ2



General n, p
• Let  denote the number of possible regions for general 


• From the discussion on  in the previous slide 


• Key idea : We relate  with  and . 


• Let  denote hyperplane set. Without loss of generality assume all hyperplanes 
intersect. 


• There exists a hyperplane  such that all hyperplanes in  intersect on 
one of its sides

M(n, p) n, p

n = 1 M(1,p) = 1 + p = 1 + (p
1)

M(n, p) M(n, p − 1) M(n − 1,p − 1)

P

h ∈ P P∖h



Recurrence relation
• There exists a hyperplane  such that all hyperplanes in  intersect on 

one of its sides


• The number of regions on the side with intersections is 


• Key: The number of regions on the other side is  as each 
region can be projected down to the hyperplane that is of dimension . 
See figure


• Thus 

h ∈ P P∖h

M(n, p − 1)

M(n − 1,p − 1)
n − 1

M(n, p) = M(n, p − 1) + M(n − 1,p − 1)



General n, p
• We would like to solve for  using 




• For 


• Can be proved via induction: 


• For general , similarly 

M(n, p) = M(n, p − 1) + M(n − 1,p − 1)
M(1,p) = 1 + (p

1)
n = 2, M(2,p) = M(2,p − 1) + M(1,p − 1) = M(2,p − 1) + (p − 1

1 ) + 1

M(2,p) = 1 + (p
1) + (p

2)
n, p M(n, p) =

n

∑
i=0

(p
i )


