CSE 203B

Discussion II

Vaishakh Ravindrakumar, 14th January, 2022

Contents

- Affine sets
- Cones and dual cones
- Convex sets
- Hyperplanes

Affine set

. A collection of points x_{1}, \cdots, x_{n} and $\theta_{1}, \theta_{2}, \cdots, \theta_{n} \in \mathbb{R} \mid \sum_{i=1}^{n} \theta_{i}=1$ induces the affine set $\theta_{1} x_{1}+\cdots+\theta_{n} x_{n}$

- E.g. $x_{1} \neq x_{2} \in \mathbb{R}^{2}$ generates the line through them

Cone

- A collection of points x_{1}, \cdots, x_{n} and $\theta_{1}, \theta_{2}, \cdots, \theta_{n} \in \mathbb{R}^{+}$induces the cone $\theta_{1} x_{1}+\cdots+\theta_{n} x_{n}$
- The coefficients are positive unlike for an affine set, and don't sum to 1
- E.g. Any $x_{1} \neq x_{2} \in \mathbb{R}^{2}$ generates a cone as shown in the figure

Cone

- E.g. II Non collinear $x_{1}, x_{2}, x_{3} \in \mathbb{R}^{3}$ induces a pyramid cone

Dual Cone

- Dual cone of a cone K is defined as $K^{*}=\left\{y \mid y^{T} x \geq 0, \forall x \in K\right\}$.
- K^{*} is also a cone (in fact it's a cone for any set K)
- For any $x_{1}, x_{2} \in K^{*}$, let $z=\theta_{1} x_{1}+\theta_{2} x_{2}$ for some $\theta_{1}, \theta_{2} \geq 0$
- Clearly for any $y \in K, y^{T} z=\theta_{1} y^{T} x+\theta_{2} y^{T} x \geq 0$

- Therefore $z \in K^{*}$

Dual Cone

- Consider the dual of K^{*}, i.e. $\left(K^{*}\right)^{*}=\left\{y \mid y^{T} x \geq 0 \forall x \in K^{*}\right\}$
- Clearly $K \subseteq\left(K^{*}\right)^{*}$ since any $y \in K$ has a positive inner product with any $x \in K^{*}$ by definition of K^{*}
- In fact for a closed convex $K,\left(K^{*}\right)^{*}=K$. Relies on the separation theorem

Convex set

- X is said to be convex if for any $x_{1}, x_{2} \in X$, and $0 \leq \theta \leq 1, \theta x_{1}+(1-\theta) x_{2} \in X$
- Can be more complicated to specify than an affine set or a cone stated in terms of 'boundary' points
- E.g. The purple region is a valid convex set X
- Affine set/cone \Longrightarrow convex set but not vice versa

Intersections of convex sets

- Consider convex sets C_{1}, \cdots, C_{n} for some finite n. Then $C \triangleq C_{1} \cap \cdots \cap C_{n}$ is also convex
- Consider any $x_{1}, x_{2} \in C$. We need to show that $y=\theta x_{1}+(1-\theta) x_{2} \in C$ for all $0 \leq \theta \leq 1$
- Clearly $x_{1}, x_{2} \in C_{i} \forall i \in\{1, \cdots, n\}$, and so is $y \in C_{i} \forall i \in\{1, \cdots, n\}$
- Thus $y \in C$
- Shows that an optimization region with many convex constraints is convex

Hyperplanes

- A hyperplane is an affine set whose dimension is one less than that of its ambient space
- In general a set of the form $\{a+u: u \in U\}$ where a, U correspond to a point and a subspace
- E.g. the plane $x_{1}+x_{2}+3 x_{3}=5$ in \mathbb{R}^{3}. The original definition of 'hyperplane' is from the 3 dimensional case
- It's a convex set as it's affine (as affine \Longrightarrow convex)

Hyperplanes and regions

- Consider \mathbb{R}^{n}. Given $a_{i} x=b_{i}$, for $i=1,2, \ldots, p, \quad x \in \mathbb{R}^{n}$.
- We'd like to evaluate the maximum number of disjoint regions separated by the hyperplanes

Illustrating $n=1,2$

- A hyperplane is a point for $n=1$
- p points on a line segment. Clearly $p+1$ regions
- Egg.

6 regions

- Hyperplane in \mathbb{R}^{2} consists of lines

General n, p

- Let $M(n, p)$ denote the number of possible regions for general n, p
- From the discussion on $n=1$ in the previous slide $M(1, p)=1+p=1+\binom{p}{1}$
- Key idea: We relate $M(n, p)$ with $M(n, p-1)$ and $M(n-1, p-1)$.
- Let P denote hyperplane set. Without loss of generality assume all hyperplanes intersect.
- There exists a hyperplane $h \in P$ such that all hyperplanes in $P \backslash h$ intersect on one of its sides

Recurrence relation

- There exists a hyperplane $h \in P$ such that all hyperplanes in $P \backslash h$ intersect on one of its sides
- The number of regions on the side with intersections is $M(n, p-1)$
- Key: The number of regions on the other side is $M(n-1, p-1)$ as each region can be projected down to the hyperplane that is of dimension $n-1$. See figure
- Thus $M(n, p)=M(n, p-1)+M(n-1, p-1)$

General n, p

- We would like to solve for $M(n, p)=M(n, p-1)+M(n-1, p-1)$ using $M(1, p)=1+\binom{p}{1}$
- For $n=2, M(2, p)=M(2, p-1)+M(1, p-1)=M(2, p-1)+\binom{p-1}{1}+1$
- Can be proved via induction: $M(2, p)=1+\binom{p}{1}+\binom{p}{2}$
. For general n, p, similarly $M(n, p)=\sum_{i=0}^{n}\binom{p}{i}$

