Midterm Review for CSE 203B

Chester Holtz

Based on slides by Prof. Stephen Boyd

Logistics

- Released on course website & Piazza: http://cseweb.ucsd.edu/classes/wi21/cse203B-a/
- No time limit, submission on gradescope
- Released Saturday 2/19 10:00 am PST, due Tuesday 2/22 10:00 am PST
- 2 sections:
 - \blacktriangleright \leq 10 True/False (with explanation)
 - \blacktriangleright \leq 5 Derivations/simple proofs
 - One programming question
 - \blacktriangleright ~ 70% based on homework questions

Overview

- Convex sets
- Convex functions
- Supporting hyperplanes
- Conjugate function
- Lagrangian Dual
- Logistics and other recommended topics

Convex sets: definition

A set S ⊆ ℝ^d is convex if the line segment between any two points in C lies in C: for any x₁, x₂ ∈ C and 0 ≤ θ ≤ 1, θx₁(1 − θ)x₂ ∈ C

For any $x_1, x_2 \in C$ and $0 \leq \theta \leq 1$, $\theta x_1(1 - \theta)x_2 \in C$

Example: the polytope $\mathcal{K} = \{x | Ax \leq b\}$ for $x, b \in \mathbb{R}^d$, $A \in \mathbb{R}^{m \times n}$

For any $x_1, x_2 \in C$ and $0 \leq \theta \leq 1$, $\theta x_1(1 - \theta)x_2 \in C$

Example: the polytope $\mathcal{K} = \{x | Ax \leq b\}$ for $x, b \in \mathbb{R}^d$, $A \in \mathbb{R}^{m \times n}$

For any $x_1, x_2 \in C$ and $0 \leq \theta \leq 1, \ \theta x_1(1-\theta)x_2 \in C$

Example: the polytope

$$P = \{x | Ax \leq b\}$$
 for $x, b \in \mathbb{R}^d$, $A \in \mathbb{R}^{m \times n}$
let $x_1, x_2 \in P$ and $0 \leq \lambda \leq 1$. Then
 $A((1 - \lambda)x_1 + \lambda x_2) = (1 - \lambda)Ax_1 + \lambda Ax_2 \leq (1 - \lambda)b + \lambda b = b$
Or use a geometric argument: P is an intersection of m
half-spaces.

For any $x_1, x_2 \in C$ and $0 \leq \theta \leq 1$, $\theta x_1(1 - \theta)x_2 \in C$

Example: dual cone $\mathcal{K} = \{(x, t) : ||x||_1 \le t\} \implies \mathcal{K}^* = \{(x, t) : ||x||_\infty \le t\}$

$$\mathcal{K}^* = \{(x,t): x^\top y + st \ge 0: (x,t) \in \mathcal{K}\}$$

Supporting Hyperplane Theorem

A supporting hyperplane to a set C is defined with respect to a boundary point x_0 :

$$\{x|a^{\top}x = a^{\top}x_0\}$$

where $a \neq 0$ and $a^{\top}x \leq a^{\top}x_0$ for all $x \in C$.

Supporting hyperplane theorem: If C is convex, then there exists a supporting hyperplane at every boundary point of C.

Supporting Hyperplane: example

 $t \ge |f(y) \ge f(x) + \nabla f(x)^{\top} (y - x)|$ (first order condition)

 $(y,t) \in epif \implies \nabla f(x)^{\top}(y-x) + f(x) - t \le 0$ $(\nabla f(x), -1)([y,t] - [x, f(x)]) \le 0$

f'17 review: 2.1 $\{x | x_1^2 + 2x_2^2 \le 9\}$ at $x_0 = [x_1, x_2] = [1, 2]$

Supporting Hyperplane: example

 $t \ge |f(y) \ge f(x) + \nabla f(x)^{\top} (y - x)|$ (first order condition)

$$(y,t) \in \operatorname{epi} f \implies \nabla f(x)^{\top} (y-x) + f(x) - t \le 0$$
$$(\nabla f(x), -1)([y,t] - [x,f(x)]) \le 0$$

f'17 review: 2.1
$$\{x | x_1^2 + 2x_2^2 \le 9\}$$
 at $x_0 = (x_1, x_2) = (1, 2)$
 $\nabla f(x) = 2x_1 + 4x_2$, $(x, f(x)) = (x_1, x_2, f(x_0)) = (1, 2, 10)$

Normal vector at x_0 : (2, 8, -1).

Convex functions: definition

A function f : ℝⁿ → ℝ is convex if domf is a convex set and if for all x, y ∈ domf and 0 ≤ θ ≤ 1

 $f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y)$ Jensen's inequality

Convex functions: definition

A function f : ℝⁿ → ℝ is convex if domf is a convex set and if for all x, y ∈ domf and 0 ≤ θ ≤ 1

 $f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y)$ Jensen's inequality

Convex functions: first order condition

If f is differentiable (domf is open, ∇f exists ∀x ∈ domf) then f is convex iff domf is convex and for all x, y ∈ dom f

$$f(y) \ge f(x) + \nabla f(x)^T (y - x)$$

Convex functions: second order condition

Suppose f is twice-differentiable (domf is open and its Hessian exists ∀x ∈ domf) then f is convex iff domf domf is convex and for all x, y ∈ dom f

 $\nabla^2 f \geq 0$ (positive semidefinite)

Convex functions: establishing convexity

By definition

- Show by definition or first-order condition
- ► For twice-differentiable functions, show $\nabla^2 f \succeq 0$

By convexity-preserving operations

- Nonnegative weighted sum
- Composition with affine function / composition with a convex + increasing function
- Pointwise maximum and supremum
- Composition
- Minimization

Convex functions: establishing convexity

By definition

- Show by definition or first-order condition
- ▶ For twice-differentiable functions, show $\nabla^2 f \succeq 0$

By convexity-preserving operations

- Nonnegative weighted sum
- Composition with affine function / convex increasing function
- Pointwise maximum and supremum
- Composition
- Minimization

powers of absolute value $f = |x|^p$ is convex with p > 1

powers of absolute value $f = |x|^p$ is convex with p > 1

Pf: Note that the composition of a convex and convex-increasing function is convex. Prove $|\cdot|$ is convex and x^p is convex and increasing.

log-convex function g(x) = log(f(x)), s.t. f convex. g(x) = log(f(x)), s.t. f convex.

quadratic form of inverse $f : \mathbb{R}^n \times S^n \to \mathbb{R}$, $f(x, Y) = x^T Y^{-1} x$ is convex on $\mathbb{R}^n \times S^n_{++}$

quadratic form of inverse

 $f: \mathbb{R}^n \times S^n \to \mathbb{R}, f(x, Y) = x^T Y^{-1} x$ is convex on $\mathbb{R}^n \times S^n_{++}$

Show epigraph of f is a convex set. Express epigraph as an LMI and apply the definiteness conditions of the Schur Complement (appendix 5.5).

Conjugate function: definition

• Given a function $f : \mathbb{R}^n \to \mathbb{R}$, the conjugate function

$$f^*(x) = \sup_{x \in \text{dom}f} y^T x - f(x)$$

• dom f^* consists of $y \in \text{dom} f$ such that $\sup_{y \in \text{dom} f} y^T x - f(x)$ is bounded.

• $f^*(x)$ is convex even if f(x) is not convex

Duality

Primal problem

 $\min f_0(x)$ $f_i(x) \le 0$ $h_i(x) = 0$

Lagrange dual function $g: \mathbb{R}^m \times \mathbb{R}^p \to \mathbb{R}$

$$g(\lambda,\nu) = \inf_{x \in \mathcal{D}} L(x,\lambda,\nu)$$

=
$$\inf_{x \in \mathcal{D}} \left(f_0(x) + \sum_{i=1}^m \lambda_i f_i(x) + \sum_{i=1}^p \nu_i h_i(x) \right)$$

Duality

Lagrange dual function $g: \mathbb{R}^m \times \mathbb{R}^p \to \mathbb{R}$

$$g(\lambda,\nu) = \inf_{x \in \mathcal{D}} L(x,\lambda,\nu)$$
$$= \inf_{x \in \mathcal{D}} \left(f_0(x) + \sum_{i=1}^m \lambda_i f_i(x) + \sum_{i=1}^p \nu_i h_i(x) \right)$$

g is concave, can be unbounded for some $-\lambda,\,\nu.$

Lower bound property If $\lambda \ge 0$, then $g(\lambda, \nu) \le p^*$. proof: if \bar{x} is feasible and $\lambda \ge 0$ then

$$f_0(\bar{x}) \ge L(\bar{x}, \lambda, \nu) \ge \inf_{x \in \mathcal{D}} L(\bar{x}, \lambda, \nu) = g(\lambda, \nu)$$

minimizing over all feasible \bar{x} gives $p^* \ge g(\lambda, \nu)$.

Duality

Lagrange dual function $g: \mathbb{R}^m \times \mathbb{R}^p \to \mathbb{R}$

$$g(\lambda,\nu) = \inf_{x \in \mathcal{D}} L(x,\lambda,\nu)$$
$$= \inf_{x \in \mathcal{D}} \left(f_0(x) + \sum_{i=1}^m \lambda_i f_i(x) + \sum_{i=1}^p \nu_i h_i(x) \right)$$

g is concave, can be unbounded for some $-\lambda$, ν .

Lower bound property

If $\lambda \ge 0$, then $g(\lambda, \nu) \le p^*$. proof: if \bar{x} is feasible and $\lambda \ge 0$ then

$$f_0(\bar{x}) \geq L(\bar{x}, \lambda, \nu) \geq \inf_{x \in \mathcal{D}} L(\bar{x}, \lambda, \nu) = g(\lambda, \nu)$$

minimizing over all feasible \bar{x} gives $p^* \ge g(\lambda, \nu)$.

Duality example: Primal and Dual of a QCQP

$$\min_{x} x^{\top} A x + b^{\top} x$$

s.t. $x^{\top} x \le c$

- The feasible set is the ball $K = \{x | x^{\top} x \le c\}$
- The Lagrange dual function of the primal problem is ?

Duality example: Primal and Dual of a QCQP

$$\min_{x} x^{\top} A x + b^{\top} x$$

s.t. $x^{\top} x \le c$

• The feasible set is the ball
$$K = \{x | x^\top x \le c\}$$

The Lagrange dual function of the primal problem is

$$g(\lambda) = \inf_{x} (x^{\top}Ax + b^{\top}x + \lambda(x^{\top}x - c))$$

= $\inf x^{\top}(A + \lambda)x + b^{\top}x - \lambda c$
= $(-1/4)b^{\top}(A + \lambda I)^{-1}b - (1/2)(A + \lambda I)^{-1}b - c\lambda^{1}$

¹Assume A invertible. Check $g(\lambda)$ is concave in λ

¹Assume A invertible. Check $g(\lambda)$ is concave in λ

Other

- Definitions and examples
- Classification of convex problems: LP, GP, SOCP, QCQP, etc.
- Characterization of PSD (convex) quadratic forms ($X \ge 0$)

•
$$y^{\top}Xy \ge 0$$

- All eigenvalues of $X \ge 0$
- Unbounded below if $\lambda_{\min}(X) < 0$, otherwise 0.

Good Luck!