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Midterm Review for CSE 203B

Chester Holtz

Based on slides by Prof. Stephen Boyd
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Logistics

▶ Released on course website & Piazza:
http://cseweb.ucsd.edu/classes/wi21/cse203B-a/

▶ No time limit, submission on gradescope
▶ Released Saturday 2/19 10:00 am PST, due Tuesday 2/22

10:00 am PST
▶ 2 sections:

▶ ≤ 10 True/False (with explanation)
▶ ≤ 5 Derivations/simple proofs
▶ One programming question
▶ ∼ 70% based on homework questions

http://cseweb.ucsd.edu/classes/wi21/cse203B-a/
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Overview

▶ Convex sets
▶ Convex functions
▶ Supporting hyperplanes
▶ Conjugate function
▶ Lagrangian Dual
▶ Logistics and other recommended topics
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Convex sets: definition

▶ A set S ⊆ Rd is convex if the line segment between any two
points in C lies in C : for any x1, x2 ∈ C and 0 ≤ θ ≤ 1,
θx1(1 − θ)x2 ∈ C
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Convex sets: example
For any x1, x2 ∈ C and 0 ≤ θ ≤ 1, θx1(1 − θ)x2 ∈ C

Example: the polytope
K = {x |Ax ≤ b} for x , b ∈ Rd , A ∈ Rm×n
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Convex sets: example
For any x1, x2 ∈ C and 0 ≤ θ ≤ 1, θx1(1 − θ)x2 ∈ C

Example: the polytope
P = {x |Ax ≤ b} for x , b ∈ Rd , A ∈ Rm×n

let x1, x2 ∈ P and 0 ≤ λ ≤ 1. Then
A((1 − λ)x1 + λx2) = (1 − λ)Ax1 + λAx2 ≤ (1 − λ)b + λb = b
Or use a geometric argument: P is an intersection of m
half-spaces.
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Convex sets: example
For any x1, x2 ∈ C and 0 ≤ θ ≤ 1, θx1(1 − θ)x2 ∈ C

Example: dual cone
K = {(x , t) : ||x ||1 ≤ t} =⇒ K ∗ = {(x , t) : ||x ||∞ ≤ t}

K ∗ = {(x , t) : x⊤y + st ≥ 0 : (x , t) ∈ K}
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Supporting Hyperplane Theorem
A supporting hyperplane to a set C is defined with respect to a
boundary point x0:

{x |a⊤x = a⊤x0}

where a ̸= 0 and a⊤x ≤ a⊤x0 for all x ∈ C .

Supporting hyperplane theorem: If C is convex, then there exists a
supporting hyperplane at every boundary point of C .
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Supporting Hyperplane: example
t ≥ f(y) ≥ f (x) + ∇f (x)⊤(y − x) (first order condition)

(y, t) ∈ epif =⇒ ∇f (x)⊤(y − x) + f (x) − t ≤ 0
(∇f (x), −1)([y, t] − [x, f (x)]) ≤ 0

f’17 review: 2.1 {x |x2
1 + 2x2

2 ≤ 9} at x0 = [x1, x2] = [1, 2]
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Supporting Hyperplane: example
t ≥ f(y) ≥ f (x) + ∇f (x)⊤(y − x) (first order condition)

(y, t) ∈ epif =⇒ ∇f (x)⊤(y − x) + f (x) − t ≤ 0
(∇f (x), −1)([y, t] − [x, f (x)]) ≤ 0

f’17 review: 2.1 {x |x2
1 + 2x2

2 ≤ 9} at x0 = (x1, x2) = (1, 2)
∇f (x) = 2x1 + 4x2, (x , f (x)) = (x1, x2, f (x0)) = (1, 2, 10)

Normal vector at x0: (2, 8, −1).
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Convex functions: definition

▶ A function f : Rn → R is convex if domf is a convex set and
if for all x , y ∈ domf and 0 ≤ θ ≤ 1

f (θx + (1 − θ)y) ≤ θf (x) + (1 − θ)f (y) Jensen’s inequality

▶ Concave functions: −f is convex
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Convex functions: first order condition

▶ If f is differentiable (domf is open, ∇f exists ∀x ∈ domf )
then f is convex iff domf is convex and for all x , y ∈ dom f

f (y) ≥ f (x) + ∇f (x)T (y − x)
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Convex functions: second order condition

▶ Suppose f is twice-differentiable (domf is open and its
Hessian exists ∀x ∈ domf ) then f is convex iff domf domf is
convex and for all x , y ∈ dom f

∇2f ≽ 0 (positive semidefinite)
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Convex functions: establishing convexity

By definition
▶ Show by definition or first-order condition
▶ For twice-differentiable functions, show ∇2f ≽ 0

By convexity-preserving operations
▶ Nonnegative weighted sum
▶ Composition with affine function / composition with a convex

+ increasing function
▶ Pointwise maximum and supremum
▶ Composition
▶ Minimization
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By definition
▶ Show by definition or first-order condition
▶ For twice-differentiable functions, show ∇2f ≽ 0

By convexity-preserving operations
▶ Nonnegative weighted sum
▶ Composition with affine function / convex increasing function
▶ Pointwise maximum and supremum
▶ Composition
▶ Minimization
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Convex functions: examples

powers of absolute value
f = |x |p is convex with p > 1
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Convex functions: examples

powers of absolute value
f = |x |p is convex with p > 1

Pf: Note that the composition of a convex and convex-increasing
function is convex. Prove | · | is convex and xp is convex and
increasing.
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Convex functions: examples

log-convex function
g(x) = log(f (x)), s.t. f convex.
g(x) = log(f (x)), s.t. f convex.
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Convex functions: examples

quadratic form of inverse
f : Rn × Sn → R, f (x , Y ) = xT Y −1x is convex on Rn × Sn

++
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Convex functions: examples

quadratic form of inverse
f : Rn × Sn → R, f (x , Y ) = xT Y −1x is convex on Rn × Sn

++

Show epigraph of f is a convex set. Express epigraph as an LMI
and apply the definiteness conditions of the Schur Complement
(appendix 5.5).
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Conjugate function: definition

▶ Given a function f : Rn → R, the conjugate function

f ∗(x) = sup
x∈domf

yT x − f (x)

▶ domf ∗ consists of y ∈ domf such that supy∈domf yT x − f (x)
is bounded.

▶ f ∗(x) is convex even if f (x) is not convex
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Duality

Primal problem

min f0(x)
fi(x) ≤ 0
hi(x) = 0

Lagrange dual function g : Rm × Rp → R

g(λ, ν) = inf
x∈D

L(x , λ, ν)

= inf
x∈D

(
f0(x) +

m∑
i=1

λi fi(x) +
p∑

i=1
νihi(x)

)
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Lagrange dual function g : Rm × Rp → R

g(λ, ν) = inf
x∈D

L(x , λ, ν)

= inf
x∈D

(
f0(x) +

m∑
i=1

λi fi(x) +
p∑

i=1
νihi(x)

)

g is concave, can be unbounded for some −λ, ν.

Lower bound property
If λ ≥ 0, then g(λ, ν) ≤ p∗.
proof: if x̄ is feasible and λ ≥ 0 then

f0(x̄) ≥ L(x̄ , λ, ν) ≥ inf
x∈D

L(x̄ , λ, ν) = g(λ, ν)

minimizing over all feasible x̄ gives p∗ ≥ g(λ, ν).
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Duality example: Primal and Dual of a QCQP

min
x

x⊤Ax + b⊤x

s.t. x⊤x ≤ c

▶ The feasible set is the ball K = {x |x⊤x ≤ c}
▶ The Lagrange dual function of the primal problem is ?
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Duality example: Primal and Dual of a QCQP

min
x

x⊤Ax + b⊤x

s.t. x⊤x ≤ c

▶ The feasible set is the ball K = {x |x⊤x ≤ c}
▶ The Lagrange dual function of the primal problem is

g(λ) = inf
x

(x⊤Ax + b⊤x + λ(x⊤x − c))

= inf x⊤(A + λ)x + b⊤x − λc
= (−1/4)b⊤(A + λI)−1b − (1/2)(A + λI)−1b − cλ1

1Assume A invertible. Check g(λ) is concave in λ
1Assume A invertible. Check g(λ) is concave in λ
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Other

▶ Definitions and examples
▶ Classification of convex problems: LP, GP, SOCP, QCQP, etc.
▶ Characterization of PSD (convex) quadratic forms (X ≥ 0)

▶ y⊤Xy ≥ 0
▶ All eigenvalues of X ≥ 0
▶ Unbounded below if λmin(X ) < 0, otherwise 0.
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Good Luck!
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