Midterm Review for CSE 203B

Chester Holtz

Based on slides by Prof. Stephen Boyd

Logistics

- Released on course website \& Piazza: http://cseweb.ucsd.edu/classes/wi21/cse203B-a/
- No time limit, submission on gradescope
- Released Saturday 2/19 10:00 am PST, due Tuesday 2/22 10:00 am PST
- 2 sections:
- ≤ 10 True/False (with explanation)
- ≤ 5 Derivations/simple proofs
- One programming question
- ~ 70\% based on homework questions

Overview

- Convex sets
- Convex functions
- Supporting hyperplanes
- Conjugate function
- Lagrangian Dual
- Logistics and other recommended topics

Convex sets: definition

- A set $S \subseteq \mathbb{R}^{d}$ is convex if the line segment between any two points in C lies in C : for any $x_{1}, x_{2} \in C$ and $0 \leq \theta \leq 1$, $\theta x_{1}(1-\theta) x_{2} \in C$

Convex sets: example

For any $x_{1}, x_{2} \in C$ and $0 \leq \theta \leq 1, \theta x_{1}(1-\theta) x_{2} \in C$

Example: the polytope
$\mathcal{K}=\{x \mid A x \leq b\}$ for $x, b \in \mathbb{R}^{d}, A \in \mathbb{R}^{m \times n}$

Convex sets: example

For any $x_{1}, x_{2} \in C$ and $0 \leq \theta \leq 1, \theta x_{1}(1-\theta) x_{2} \in C$

Example: the polytope
$\mathcal{K}=\{x \mid A x \leq b\}$ for $x, b \in \mathbb{R}^{d}, A \in \mathbb{R}^{m \times n}$

Convex sets: example

```
For any }\mp@subsup{x}{1}{},\mp@subsup{x}{2}{}\inC\mathrm{ and 0}\leq0\leq1,0\mp@subsup{x}{1}{}(1-0)\mp@subsup{x}{2}{}\in
```

Example: the polytope
$P=\{x \mid A x \leq b\}$ for $x, b \in \mathbb{R}^{d}, A \in \mathbb{R}^{m \times n}$
let $x_{1}, x_{2} \in P$ and $0 \leq \lambda \leq 1$. Then
$A\left((1-\lambda) x_{1}+\lambda x_{2}\right)=(1-\lambda) A x_{1}+\lambda A x_{2} \leq(1-\lambda) b+\lambda b=b$
Or use a geometric argument: P is an intersection of m half-spaces.

Convex sets: example

For any $x_{1}, x_{2} \in C$ and $0 \leq \theta \leq 1, \theta x_{1}(1-\theta) x_{2} \in C$

Example: dual cone

$$
\begin{array}{r}
K=\left\{(x, t):\|x\|_{1} \leq t\right\} \Longrightarrow K^{*}=\left\{(x, t):\|x\|_{\infty} \leq t\right\} \\
K^{*}=\left\{(x, t): x^{\top} y+s t \geq 0:(x, t) \in K\right\}
\end{array}
$$

Supporting Hyperplane Theorem

A supporting hyperplane to a set C is defined with respect to a boundary point x_{0} :

$$
\left\{x \mid a^{\top} x=a^{\top} x_{0}\right\}
$$

where $a \neq 0$ and $a^{\top} x \leq a^{\top} x_{0}$ for all $x \in C$.

Supporting hyperplane theorem: If C is convex, then there exists a supporting hyperplane at every boundary point of C.

Supporting Hyperplane: example

$$
\begin{aligned}
& t \geq \mathrm{f}(y) \geq f(x)+\nabla f(x)^{\top}(y-x) \text { (first order condition) } \\
& (y, t) \in \text { epif } \Longrightarrow \nabla f(x)^{\top}(y-x)+f(x)-t \leq 0 \\
& (\nabla f(x),-1)([y, t]-[x, f(x)]) \leq 0
\end{aligned}
$$

f'17 review: $2.1\left\{x \mid x_{1}^{2}+2 x_{2}^{2} \leq 9\right\}$ at $x_{0}=\left[x_{1}, x_{2}\right]=[1,2]$

Supporting Hyperplane: example

```
t\geqf(y)\geqf(x)+\nablaf(x\mp@subsup{)}{}{\top}(y-x)}\mathrm{ (first order condition)
(y,t) \in epif \Longrightarrow\nablaf(x)}\mp@subsup{}{}{\top}(y-x)+f(x)-t\leq
(\nablaf(x),-1)([y,t]-[x,f(x)])\leq0
```

f'17 review: $2.1\left\{x \mid x_{1}^{2}+2 x_{2}^{2} \leq 9\right\}$ at $x_{0}=\left(x_{1}, x_{2}\right)=(1,2)$
$\nabla f(x)=2 x_{1}+4 x_{2},(x, f(x))=\left(x_{1}, x_{2}, f\left(x_{0}\right)\right)=(1,2,10)$
Normal vector at $x_{0}:(2,8,-1)$.

Convex functions: definition

- A function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is convex if dom f is a convex set and if for all $x, y \in \operatorname{dom} f$ and $0 \leq \theta \leq 1$
$f(\theta x+(1-\theta) y) \leq \theta f(x)+(1-\theta) f(y)$ Jensen's inequality
- Concave functions: $-f$ is convex

Convex functions: definition

- A function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is convex if dom f is a convex set and if for all $x, y \in \operatorname{dom} f$ and $0 \leq \theta \leq 1$
$f(\theta x+(1-\theta) y) \leq \theta f(x)+(1-\theta) f(y)$ Jensen's inequality
- Concave functions: $-f$ is convex

Convex functions: first order condition

- If f is differentiable (domf is open, ∇f exists $\forall x \in \operatorname{dom} f$) then f is convex iff dom f is convex and for all $x, y \in \operatorname{dom} \mathrm{f}$

$$
f(y) \geq f(x)+\nabla f(x)^{T}(y-x)
$$

Convex functions: second order condition

- Suppose f is twice-differentiable (domf is open and its Hessian exists $\forall x \in \operatorname{dom} f$) then f is convex iff $\operatorname{dom} f \operatorname{dom} f$ is convex and for all $x, y \in \operatorname{dom} \mathrm{f}$

$$
\nabla^{2} f \succcurlyeq 0 \quad \text { (positive semidefinite) }
$$

Convex functions: establishing convexity

By definition

- Show by definition or first-order condition
- For twice-differentiable functions, show $\nabla^{2} f \succcurlyeq 0$

By convexity-preserving operations

- Nonnegative weighted sum
- Composition with affine function / composition with a convex + increasing function
- Pointwise maximum and supremum
- Composition
- Minimization

Convex functions: establishing convexity

By definition

- Show by definition or first-order condition
- For twice-differentiable functions, show $\nabla^{2} f \succcurlyeq 0$

By convexity-preserving operations

- Nonnegative weighted sum
- Composition with affine function / convex increasing function
- Pointwise maximum and supremum
- Composition
- Minimization

Convex functions: examples

powers of absolute value
$f=|x|^{p}$ is convex with $p>1$

Convex functions: examples

powers of absolute value
$f=|x|^{p}$ is convex with $p>1$

Pf: Note that the composition of a convex and convex-increasing function is convex. Prove $|\cdot|$ is convex and x^{p} is convex and increasing.

Convex functions: examples

log-convex function

$$
\begin{aligned}
& g(x)=\log (f(x)), \text { s.t. } f \text { convex. } \\
& g(x)=\log (f(x)), \text { s.t. } f \text { convex. }
\end{aligned}
$$

Convex functions: examples

quadratic form of inverse
$f: \mathbb{R}^{n} \times S^{n} \rightarrow \mathbb{R}, f(x, Y)=x^{T} Y^{-1} x$ is convex on $\mathbb{R}^{n} \times S_{++}^{n}$

Convex functions: examples

quadratic form of inverse
$f: \mathbb{R}^{n} \times S^{n} \rightarrow \mathbb{R}, f(x, Y)=x^{T} Y^{-1} x$ is convex on $\mathbb{R}^{n} \times S_{++}^{n}$

Show epigraph of f is a convex set. Express epigraph as an LMI and apply the definiteness conditions of the Schur Complement (appendix 5.5).

Conjugate function: definition

- Given a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$, the conjugate function

$$
f^{*}(x)=\sup _{x \in \operatorname{dom} f} y^{\top} x-f(x)
$$

- $\operatorname{dom} f^{*}$ consists of $y \in \operatorname{dom} f$ such that $\sup _{y \in \operatorname{dom} f} y^{T} x-f(x)$ is bounded.
- $f^{*}(x)$ is convex even if $f(x)$ is not convex

Duality

Primal problem

$$
\begin{aligned}
& \min f_{0}(x) \\
& f_{i}(x) \leq 0 \\
& h_{i}(x)=0
\end{aligned}
$$

Lagrange dual function $g: \mathbb{R}^{m} \times \mathbb{R}^{p} \rightarrow \mathbb{R}$

$$
\begin{aligned}
g(\lambda, \nu) & =\inf _{x \in \mathcal{D}} L(x, \lambda, \nu) \\
& =\inf _{x \in \mathcal{D}}\left(f_{0}(x)+\sum_{i=1}^{m} \lambda_{i} f_{i}(x)+\sum_{i=1}^{p} \nu_{i} h_{i}(x)\right)
\end{aligned}
$$

Duality

Lagrange dual function $g: \mathbb{R}^{m} \times \mathbb{R}^{p} \rightarrow \mathbb{R}$

$$
\begin{aligned}
g(\lambda, \nu) & =\inf _{x \in \mathcal{D}} L(x, \lambda, \nu) \\
& =\inf _{x \in \mathcal{D}}\left(f_{0}(x)+\sum_{i=1}^{m} \lambda_{i} f_{i}(x)+\sum_{i=1}^{p} \nu_{i} h_{i}(x)\right)
\end{aligned}
$$

g is concave, can be unbounded for some $-\lambda, \nu$.
Lower bound property
If $\lambda \geq 0$, then $g(\lambda, \nu) \leq p^{*}$.
proof: if \bar{x} is feasible and $\lambda \geq 0$ then

$$
f_{0}(\bar{x}) \geq L(\bar{x}, \lambda, \nu) \geq \inf _{x \in \mathcal{D}} L(\bar{x}, \lambda, \nu)=g(\lambda, \nu)
$$

minimizing over all feasible \bar{x} gives $p^{*} \geq g(\lambda, \nu)$.

Duality

Lagrange dual function $g: \mathbb{R}^{m} \times \mathbb{R}^{p} \rightarrow \mathbb{R}$

$$
\begin{aligned}
g(\lambda, \nu) & =\inf _{x \in \mathcal{D}} L(x, \lambda, \nu) \\
& =\inf _{x \in \mathcal{D}}\left(f_{0}(x)+\sum_{i=1}^{m} \lambda_{i} f_{i}(x)+\sum_{i=1}^{p} \nu_{i} h_{i}(x)\right)
\end{aligned}
$$

g is concave, can be unbounded for some $-\lambda, \nu$.
Lower bound property
If $\lambda \geq 0$, then $g(\lambda, \nu) \leq p^{*}$.
proof: if \bar{x} is feasible and $\lambda \geq 0$ then

$$
f_{0}(\bar{x}) \geq L(\bar{x}, \lambda, \nu) \geq \inf _{x \in \mathcal{D}} L(\bar{x}, \lambda, \nu)=g(\lambda, \nu)
$$

minimizing over all feasible \bar{x} gives $p^{*} \geq g(\lambda, \nu)$.

Duality example: Primal and Dual of a QCQP

$$
\begin{aligned}
& \min _{x} x^{\top} A x+b^{\top} x \\
& \text { s.t. } x^{\top} x \leq c
\end{aligned}
$$

- The feasible set is the ball $K=\left\{x \mid x^{\top} x \leq c\right\}$
- The Lagrange dual function of the primal problem is ?

Duality example: Primal and Dual of a QCQP

$$
\begin{aligned}
& \min _{x} x^{\top} A x+b^{\top} x \\
& \text { s.t. } \quad x^{\top} x \leq c
\end{aligned}
$$

- The feasible set is the ball $K=\left\{x \mid x^{\top} x \leq c\right\}$
- The Lagrange dual function of the primal problem is

$$
\begin{aligned}
g(\lambda) & =\inf _{x}\left(x^{\top} A x+b^{\top} x+\lambda\left(x^{\top} x-c\right)\right) \\
& =\inf ^{\top}(A+\lambda) x+b^{\top} x-\lambda c \\
& =(-1 / 4) b^{\top}(A+\lambda /)^{-1} b-(1 / 2)(A+\lambda I)^{-1} b-c \lambda^{1}
\end{aligned}
$$

[^0]
Other

- Definitions and examples
- Classification of convex problems: LP, GP, SOCP, QCQP, etc.
- Characterization of PSD (convex) quadratic forms $(X \geq 0)$
- $y^{\top} X y \geq 0$
- All eigenvalues of $X \geq 0$
- Unbounded below if $\lambda_{\text {min }}(X)<0$, otherwise 0 .

Good Luck!

[^0]: ${ }^{1}$ Assume A invertible. Check $g(\lambda)$ is concave in λ
 ${ }^{1}$ Assume A invertible. Check $g(\lambda)$ is concave in λ

