CSE 127 Week 10 Discussion
PA5: Cryptography

- Due: Sunday, March 13 at 6:00pm
- PA5: Ciphertext available on Gradescope for Part 1
- Five parts
 - Vigenère Cipher
 - MD5 Length Extension
 - MD5 collisions
 - RSA signature forgery
 - Writeup
Caesar Cipher

- shift letters of plaintext by fixed amount to get ciphertext

<table>
<thead>
<tr>
<th>Plaintext</th>
<th>A T T A C K A T D A W N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ciphertext</td>
<td>D W W D F N D W G D Z Q</td>
</tr>
</tbody>
</table>

A + 3 → D
T + 3 → W
C + 3 → F
...

...
Vigenère Cipher

- the combination of several Caesar Ciphers

Plaintext A T T A C K A T D A W N
Key B L A I S E B L A I S E
Ciphertext B E T I U O B E D I O R

Key ‘A’ means no shift
Key ‘B’ means shift by 1
Key ‘C’ means shift by 2
...
Tips

- Caesar Cipher is vulnerable to frequency analysis
- Vigenère Cipher is composed of $|\text{Key}|$ Caesar Ciphers that can be defeated individually
- How can you figure out $|\text{Key}|$?
- How do you know you got the correct key?
- User either member’s ciphertext is ok for group submissions
MD5 Length Extension

- Goal: generate an URL where the token is the valid MD5 hash of extended parameters
- For this part it is pymd5.py which has some functions to get at individual steps of md5 hashing
- Key idea: padding is 1 followed by necessary number of zeros at end of message, but you need to be able to have a 1 followed by zeros as part of the message as well
- 2.a in the assignment walks you through this and should make the attack understandable
Tips

- python3 len_ext_attack.py "http://.........No0p"
- Only use urllib.parse.quote() for the padding
MD5 Collisions

- Goal: two programs with different behavior that hash to the same thing
- We provide fastcoll which generates MD5 collisions
- You might need to build this code if it's not available on your OS so there is also a makefile to help
- Key idea: once you have a collision, you can use your previous part to add identical suffixes to them and they will continue to collide
- think about how you can hide junk you are creating, will be useful later as well
Tips

- suffix should have a new line at the beginning
- Checkout piazza @610 if you run into compiling `fastcoll` on macOS
RSA Signature - Textbook

- Alice has public key \((N, e)\) and private key \(d\) where \(x^{(de)} = x \mod N\).
- To sign a message \(m\), Alice computes \(s = m^d\) and Bob can verify by checking that \(s^e = m \mod N\).
- Eve can trivially generate a signed message \((m=s^e, s)\), where \(s^e\) is the message and \(s\) the signature.
- Bob verifies the signature by checking by \(s^e = m\).
RSA Signature

To combat the previous problem, structure is added to the message

A k-bit RSA key used to sign a Sha-1 hash digest will generate the following padded value of m:

\[
\text{Sig} = \text{padding}(\text{SHA1}(m))^d \mod N
\]

\[
\text{Verify} = (\text{strip_padding}(\text{Sig}^e \mod N) == \text{SHA1}(m)
\]

\[
\begin{array}{c}
00\ 01\ \text{FF...FF}\ 00\ 3021300906052B0E03021A05000414\ \text{XX...XX}
\end{array}
\]

\[
\begin{array}{c}
\text{~~~~~~~~~~}\ \text{~~~~~~~~~~~~~~~~~~~~~~~~}\ \text{~~~~~~~~~~}
\end{array}
\]

k/8 \ - \ 38\ \text{bytes\ wide}\ | | \ 20-\text{byte\ SHA-1\ digest}

\[
\begin{array}{c}
\text{ASN.1\ "magic"\ bytes}
\end{array}
\]
RSA Signature Forgery

- So now Eve can’t compute just any s^e because it needs to match the format.
- Note that number of FF bytes is determined in specification.
- **What happens if this is not checked?** (i.e. implementation just discards FF bytes until reaches a 00 byte)
- Instead of generating a signature s such that s^e is of the form on the previous slide, it only needs to match on a certain number of high order bytes with any number of FF padding bytes.
- Problem compounded if $e=3$, because can then work in integers (compare $e=65537$).
Tips

- If got stuck finding a valid root, think about how many higher bytes in the signature the verification process should recover?
- Don’t use `openssl` to test your solution. Write your own validation code that doesn’t check the length of FFs
Writeup

- 7 questions, 4 from part 3a and 3 from part 5 in assignment
- Answers should be concise and complete
- Write a comment if you used your code from previous classes (e.g. CSE 107)