Lecture 21: Congestion Control

CSE 123: Computer Networks
Alex C. Snoeren
Lecture 20 Overview

- Bandwidth Allocation
- Congestion Collapse
- TCP Bandwidth Probing
CC Overview

- How fast should a sending host transmit data?
 - Not to fast, not to slow, just right...

- Should not be faster than the sender’s share
 - Bandwidth allocation

- Should not be faster than the network can process
 - Congestion control

- Congestion control & bandwidth allocation are separate ideas, but frequently combined
Bandwidth Allocation

- How much bandwidth should each flow from a source to a destination receive when they compete for resources?
 - What is a “fair” allocation?

How fast should Source 1 be able to send to Destination 1?

A. 2 Mbps
B. 10/21 * 4 Mbps
C. 5/15 * 4 Mbps
D. 4/14 * 4 Mbps

CSE 123 – Lecture 21: Congestion Control
Packets dropped here

- Buffer intended to absorb bursts when input rate > output
- But if sending rate is persistently > drain rate, queue builds
- Dropped packets represent wasted work; goodput < throughput
Drop-Tail Queuing

Loss due to Congestion

Congestion collapse

CSE 123 – Lecture 21: Congestion Control
Congestion Collapse

- Rough definition: “When an increase in network load produces a decrease in useful work”

- Why does it happen?
 - Senders send faster than bottleneck link speed
 - Packets queue until dropped
 - In response to packets being dropped, senders retransmit
 - All hosts repeat in steady state…
Mitigation Options

- Increase network resources
 - More buffers for queuing
 - Increase link speed
 - How big should buffers be for a given speed?

- Reduce network load by adapting sending rate
 - Send data more slowly
 - How much more slowly?
 - When to slow down?

Which mitigation option can eliminate congestion collapse?

A. Increased buffers
B. Faster links
C. Adaptive sending rates
D. All of the above
Designing a Control

- Open loop
 - Explicitly reserve bandwidth in the network in advance

- Closed loop
 - Respond to feedback and adjust bandwidth allocation

- Network-based
 - Network implements and enforces bandwidth allocation

- Host-based
 - Hosts are responsible for controlling their sending rate
Proactive vs. Reactive

- Congestion avoidance: try to stay to the left of the knee
- Congestion control: try to stay to the left of the cliff
Challenges to Address

- How to detect congestion?
- How to limit sending data rate?
- How fast to send?
Detecting Congestion

- Explicit congestion signaling
 - Source Quench: ICMP message from router to sender
 - DECBit / Explicit Congestion Notification (ECN):
 - Router marks packet based on queue occupancy (i.e. indication that packet encountered congestion along the way); receiver echos to sender

- Implicit congestion signaling
 - Packet loss
 - Assume congestion is primary source of packet loss
 - Lost packets indicate congestion
 - Packet delay
 - Round-trip time increases as packets queue
 - Packet inter-arrival time is a function of bottleneck link
Throttling Options

- **Window-based (TCP)**
 - Constrain number of outstanding packets allowed in network
 - Increase window to send faster; decrease to send slower
 - Pro: Cheap to implement, good failure properties
 - Con: Creates traffic bursts (requires bigger buffers)

- **Rate-based (many streaming media protocols)**
 - Two parameters (period, packets)
 - Allow sending of x packets in period y
 - Pro: smooth traffic
 - Con: fine-grained per-connection timers
TCP’s Probing Approach

- Each source independently probes the network to determine how much bandwidth is available
 - Changes over time, since everyone does this
- Assume that packet loss implies congestion
 - Since errors are rare; also, requires no support from routers
Basic TCP Algorithm

- Window-based congestion control
 - Unified congestion control and flow control mechanism
 - $rwin$: advertised flow control window from receiver
 - $cwnd$: congestion control window
 - Estimate of how much outstanding data network can deliver in a round-trip time
 - Sender can only send $\min(rwin, cwnd)$ at any time

- Idea: decrease $cwnd$ when congestion is encountered; increase $cwnd$ otherwise
 - Question: how much to adjust?
Choosing a Send Rate

- Ideally: Keep equilibrium at “knee” of power curve
 - Find “knee” somehow
 - Keep number of packets “in flight” the same
 - Don’t send a new packet into the network until you know one has left (i.e. by receiving an ACK)
 - What if you guess wrong, or if bandwidth availability changes?

- Compromise: adaptive approximation
 - If data delivered successfully, increase sending rate by x
 - If congestion signaled, reduce sending rate by y

What does the relationship between x and y need to be?

A. $y < x$
B. $y = x$
C. $y > x$
D. $y >> x$
Congestion Avoidance

- Goal: Adapt to changes in available bandwidth

- Additive Increase, Multiplicative Decrease (AIMD)
 - Increase sending rate by a constant (e.g. MSS)
 - Decrease sending rate by a linear factor (e.g. divide by 2)

- Rough intuition for why this works
 - Let L_i be queue length at time i
 - In steady state: $L_i = N$, where N is a constant
 - During congestion, $L_i = N + yL_{i-1}$, where $y > 0$
 - Consequence: queue size increases multiplicatively
 » Must reduce sending rate multiplicatively as well
For next time…

- Read Ch. 2.1 in P&D
- Homework 4 due next Friday before class
- Keep chugging on Project 2b