Today's learning goals

- Summarize key concepts, ideas, themes from CSE 105.
- Approach your final exam studying with confidence.
- Identify areas to focus on while studying for the exam.

Reminders

- CAPE and TA evaluations open
- Final exam Wednesday 3/9 5-6:30pm
<table>
<thead>
<tr>
<th>Model of computation</th>
<th>Class of languages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formal definition?</td>
<td>Closure properties?</td>
</tr>
<tr>
<td>Design?</td>
<td>Which languages not in class?</td>
</tr>
<tr>
<td>Describe language?</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Finite automata</th>
<th>Regular languages</th>
</tr>
</thead>
<tbody>
<tr>
<td>-- DFA</td>
<td></td>
</tr>
<tr>
<td>-- NFA</td>
<td></td>
</tr>
<tr>
<td>equiv to Regular expressions</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Push-down automata</th>
<th>Context-free languages</th>
</tr>
</thead>
<tbody>
<tr>
<td>POA</td>
<td></td>
</tr>
<tr>
<td>CFGs</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TMs that always halt in polynomial time</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>(fast)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nondeterministic TMs that halt in polynomial time</th>
<th>NP</th>
</tr>
</thead>
<tbody>
<tr>
<td>verify solution fast</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TMs that always halt aka Deciders</th>
<th>Decidable languages</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>To show not in class:</td>
</tr>
<tr>
<td></td>
<td>Diagonalization, reduction</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Turing Machines (in general; may not halt)</th>
<th>Recognizable languages</th>
</tr>
</thead>
</table>
Where to next?

• This class: **computability theory** – what can be computed in finite time

• CSE 200: **complexity theory** – ok, finite, but how fast? How much memory? More about reductions, non-determinism, non-uniformity, interactive protocols,…

• Yes, it’s a grad class, but if you liked what you saw here, you should take it.
Roadmap of examples

A. Regular language design
B. Undecidability via reduction
C. Closure proofs
D. Determining the language of a PDA /CFG
E. Using Pumping Lemma
Given L, prove it is regular

Construction

Strategy 1: Construct DFA

Strategy 2: Construct NFA

Strategy 3: Construct regular expression

Proof of correctness

WTS 1 if w is in L then w is accepted by …

WTS 2 if w is not in L then w is rejected by …
Ex: \(L = \{ w \in \{0,1\}^* \mid w \text{ has odd \# of 1s OR starts with 0} \} \)

NFA:

Regular expression:

\[0^* 1 (0^*10^*1)^*0^* \cup 0^* (011)^* \]
To show a language is **not** regular, we can

A. Show there is a CFG generating A.
B. Use the pumping lemma for regular languages.
C. Show A is undecidable.
D. More than one of the above.
E. I don't know.
To show a language L is ...

Recognizable
- Show there is a TM M with $L(M) = L$.
- Use closure properties.

Not recognizable
- Prove that L is not decidable and that the complement of L is recognizable.
- Use closure properties.

Fact: L decidable $\iff L, L^c$ recognizable
To show a language L is ...

Decidable

- Show there is a TM D that always halts and $L(D) = L$.
- Find a decidable problem L' and show L reduces to L'.
- Use closure properties.

Not decidable

- Use diagonalization.
- Find an undecidable problem L' and show L' reduces to L.
- Use closure properties.
Undecidability via reduction

Theorem: Problem T is undecidable.

Proof Common pattern for many of these proofs.

Assume (towards a contradiction) that T is decidable by TM M_T. Goal: use M_T to build a machine which will decide A_{TM}.

Define $M_{ATM} =$ "On input $<M,w>$:

1. Using the parameters M and w, construct a different TM X such that if M accepts w, then $<X>$ is in T; if M does not accept w, then $<X>$ is not in T."

2. Run M_T on $<X>$ and accept if M_T accepts, reject if M_T rejects."

Claim: M_{ATM} is decider and $L(M_{ATM}) = A_{TM}$, then A_{TM} is decidable, contradicting the known fact that A_{TM} is undecidable.
\[T = \{ <M> \mid M \text{ is TM and } |L(M)| = 1 \} \]

Theorem: Problem T is undecidable.

Proof
Assume (towards a contradiction) that T is decidable by TM \(M_T \).
Goal: use \(M_T \) to build a machine which will decide \(A_{TM} \).
Define \(M_{ATM} \) = "On input \(<M,w> \):
1. Using the parameters \(M \) and \(w \), construct a different TM \(X \) such that if \(M \) accepts \(w \), then \(<X> \) is in \(T \); if \(M \) does not accept \(w \), then \(<X> \) is not in \(T \).
2. Run \(M_T \) on \(<X> \) and accept if accepts, reject if rejects.
Claim: \(M_{ATM} \) is decider and \(L(M_{ATM}) = A_{TM} \), then \(A_{TM} \) is decidable, contradicting the known fact that \(A_{TM} \) is undecidable.
Undecidability via reduction

Theorem: Problem T is undecidable.

Proof Common pattern for many of these proofs.

Assume (towards a contradiction) that T is decidable by TM M_T.

Goal: use M_T to build a machine which will decide A_{TM}.

Define $M_{ATM} = "On input <M,w>:"

1. Using the parameters M and w, construct a different TM X such that if M accepts w, then $<X>$ is in T; if M does not accept w, then $<X>$ is not in T.

2. Run M_T on $<X>$ and accept if accepts, reject if rejects.

Claim: M_{ATM} is decider and $L(M_{ATM}) = A_{TM}$, then A_{TM} is decidable, contradicting the known fact that A_{TM} is undecidable.

In reduction proofs,

A. We always need to build a new TM X.

B. The auxiliary machine X must be run as part of our algorithm.

C. The auxiliary machine X runs only on w.

D. None of the above.

E. I don't know.
Countable and uncountable

Countable
• Find bijection with N
• Find a countable superset

Examples
Any language over Σ
Set of all regular languages
Set of rational numbers
Set of integers

Uncountable
• Diagonalization
• Find an uncountable subset

Examples
Set of all subsets of Σ^*
Set of infinite binary sequences
Set of real numbers
$[0,1]$
Closure properties

<table>
<thead>
<tr>
<th></th>
<th>Regular Languages</th>
<th>CFL</th>
<th>Decidable Languages</th>
<th>Recognizable Languages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Union</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Intersection</td>
<td>✔</td>
<td>✗</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Complement</td>
<td>✔</td>
<td>✗</td>
<td>✔</td>
<td>✗</td>
</tr>
<tr>
<td>Star</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Concatenation</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
</tbody>
</table>

\[L \subseteq \text{countable} \]
Proving closure

Goal: "The class of ____ languages is closed under ______"

In other words Given a language in specific class, is the result of applying the operation _____ to this language still guaranteed to be in the class?
Proving closure

Given: What does it mean for \(L \) to be in class?

- e.g. \(L \) a regular language, so given a DFA \(M_L = (Q_L, \Sigma_L, \delta_L, q^L, F_L) \) with \(L(M_L) = L \). Name each of the pieces!

WTS: The result of applying the operation to \(L \) is still in this class.

Construction: Build a machine that recognizes the result of applying the operation to \(L \). Start with description in English!

- e.g. Let \(M = (Q, \Sigma, \delta, q_0, F) \) where \(Q = \ldots, \Sigma = \ldots, \delta = \ldots, q_0 = \ldots, F = \ldots \)

- \(M \) could be DFA or NFA

Correctness: Prove \(L(M) = \) result of applying operation to \(L \)

- WTS1 if \(w \) is in set then \(w \) is accepted by \(M \)
- WTS2 if \(w \) is not in the set then \(w \) is rejected by \(M \).
Claim: The class of recognizable languages is closed under concatenation

Given

WTS

Construction

Correctness
Claim: The class of recognizable languages is closed under concatenation

Given Two recognizable languages A, B and TMs that recognize them: M_A with $L(M_A) = A$ and M_B with $L(M_B) = B$.

WTS The language AB is recognizable.

Construction Define the TM M as "On input w,

1. Nondeterministically split w into $w = xy$.
2. Simulate running M_A on x. If rejects, reject; if accepts go to 3.
3. Simulate running M_B on y. If rejects, reject; if accepts, accept.

Correctness
Construction Define the TM M as "On input w,
1. Nondeterministically split w into w = xy.
2. Simulate running M_A on x. If rejects, reject; if accepts go to 3.
3. Simulate running M_B on y. If rejects, reject; if accepts, accept.

Correctness Claim that w is in AB iff w is in L(M).

Part 1: Assume w is in AB. Then there are strings x,y such that w = xy and x is in A, y is in B. Running M on w, one of the nondeterministic ways we split w will be into these x,y. In step 2, the computation of M_A on x will halt and accept (because $L(M_A) = A$) so we go to step 3. In that step, the computation of M_B on y will halt and accept (because $L(M_B) = B$ so M accepts w."
Construction Define the TM M as "On input w,
1. Nondeterministically split w into $w = xy$.
2. Simulate running M_A on x. If rejects, reject; if accepts go to 3.
3. Simulate running M_B on y. If rejects, reject; if accepts, accept.

Correctness Claim that w is in AB iff w is in $L(M)$.

Part 2: Assume w is not in AB. Then there are no strings x,y such that $w = xy$ and x is in A, y is in B. In other words, for each way of splitting w into xy, at least one of the following is true: M_A running on x will reject or loop, M_B running on y will reject or loop. Tracing the computation of M on w, in each one of the nondeterministic computation paths, there is some split $w=xy$. For each of these splits, in step 2, the computation of M_A on x either loops (in which case M loops on w, so w is not in $L(M)$) or rejects (in which case M rejects w) or accepts (in which case M goes to step 3). If the computation of M enters step 3, this means that x is in $L(M_A)$ so by our assumption, y is not in $L(M_B)$ so M_B on y must either loop or reject. In either case, M rejects. Thus w is not in $L(M)$.
Proving closure

Given: What does it mean for L to be in class?

e.g. L a regular language. so given a DFA $M_L = (Q_L, \Sigma_L, \delta_L, q_L, F_L)$

WTS: The result of applying the operation to L is still in this class.

Construction: Build a machine that recognizes the result of applying the operation.

Start with description in English!
e.g. Let $M = (Q, \Sigma, \delta, q_0, F)$ where $Q = ...$ $\Sigma = ...$ $\delta = ...$ $q_0 = ...$ $F = ..$

M could be DFA or NFA

Correctness: Prove $L(M) = \text{result of applying operation to } L$

WTS1 if w is in set then w is accepted by M

WTS2 if w is not in the set then w rejected by M

To prove the class of recognizable languages is closed under _____ the constructions may involve building a

A. Two-tape Turing machine.
B. Nondeterministic decider.
C. Enumerator.
D. All of the above.
E. I don't know.
Claim: The class of decidable languages is closed under reversal.

Given

WTS

Construction

Correctness
Claim: The class of decidable languages is closed under reversal

Given A decidable language \(L \), with a decider TM \(D: L(D)=L \)

WTS There is a decider that decides \(L^R = \{w \mid w^R \text{ is in } L\} \)

Construction Define the TM \(M \) as "On input \(w \):
1. Make a copy of \(w \) in reverse.
2. Simulate running \(D \) on this copy.
3. If \(D \) accepts, accept. If \(D \) rejects, reject.

Correctness If \(w \) is in \(L^R \) then in step 1, \(M \) builds \(w^R \) and in step 2, the computation of \(D \) on \(w^R \) will accept (because \(L(D) = L \)), so in step 3, \(M \) accepts \(w \). If \(w \) is not in \(L^R \) then in step 1, \(M \) builds \(w^R \) and in step 2, the computation of \(D \) on \(w^R \) will reject (because \(L(D) = L \)), so in step 3, \(M \) rejects \(w \).
Claim: The class of decidable languages is closed under reversal

Given A decidable language L, with a decider TM D: L(D) = L

WTS There is a decider that decides $L^R = \{w \mid w^R \text{ is in } L\}$.

Construction Define M as follows:
1. Make a copy of w in reverse.
2. Simulate running D on this copy.
3. If D accepts, accept. If D rejects, reject.

Correctness If w^R is in L, in step 1, M builds w^R and in step 2, the computation of D on w^R will accept (because $L(D) = L$), so in step 3, M accepts w. If w^R is not in L, then in step 1, M builds w^R and in step 2, the computation of D on w^R will reject (because $L(D) = L$), so in step 3, M rejects w.

Is this how we proved that the class of regular languages is closed under reversal?

A. Yes.
B. No – but we could modify our earlier proof to make a copy of w^R and then run the DFA on it.
C. No – and this strategy won't work for automata.
D. I don't know.
What is the language of this PDA?

A. \(\{ w \mid \text{# of b's in } w \geq \text{# of a's in } w \} \)
B. \(\{ w \mid w = a^n b^{n+1} \text{ for some } n \geq 0 \} \)
C. \(\{ w \mid w = a^n b^{n+2} \text{ for some } n \geq 0 \} \)
D. \(\{ w \mid w = a^n b^{2n} \text{ for some } n \geq 0 \} \)
E. \(\{ w \mid w = 0a^n b^{2n}0 \text{ for some } n \geq 0 \} \)
What is the language of CFG

with rules

\[S \rightarrow aSb | bY | Ya \]
\[Y \rightarrow bY | Ya | \epsilon \]

\(Y \) generates \(b^*a^* \)

\(S \) generates \(\{a^n b^* a^* b^n : n \geq 0 \} \)
Theorem: \(L = \{ w w^R \mid w \text{ is in } \{0,1\}^* \} \) is not regular.

Proof (by contradiction): Assume, towards a contradiction, that \(L \) is regular. Then by the Pumping Lemma, there is a pumping length, \(p \), for \(L \). Choose \(s \) to be the string _________. The Pumping Lemma guarantees that \(s \) can be divided into parts \(s=xyz \) such that \(|xy| \leq p \), \(|y|>0\), and for any \(i \geq 0 \), \(xy^iz \) is in \(L \). But, if we let \(i=____ \), we get the string ______ which is not in \(L \), a contradiction. Thus \(L \) is not regular.
Theorem: \(L = \{ww^R \mid w \text{ is in } \{0,1\}^* \} \) is not regular.

Proof (by contradiction): Assume, towards a contradiction, that \(L \) is regular. Then by the Pumping Lemma, there is a pumping length, \(p \), for \(L \). Choose \(s \) to be the string _______. The Pumping Lemma guarantees that \(s \) can be divided into parts \(s=xyz \) such that \(|xy| \leq p\), \(|y|>0\), and for any \(i \geq 0 \), \(xy^iz \) is in \(L \). But, if we let \(i=____ \), we get the string ______ which is not in \(L \), a contradiction. Thus \(L \) is not regular.

A. \(s = 000000111111 \), \(i=6 \)
B. \(s=0^p0^p \), \(i=2 \)
C. \(s=0^p110^p \), \(i=2 \)
D. More than one of the above.
E. I don't know.
P and NP

P: Languages decidable in polynomial time on deterministic Turing machines.

 e.g. PATH, Simple arithmetic, CFL's, etc.

NP: Languages decidable in polynomial time on nondeterministic Turing machines.

 e.g. TSP, SAT, CLIQUE, etc.

Know $P \subseteq NP$ and

 if an NP-complete problem is in P, then $P = NP$.
CF

Regular

Decidable

NP?

Recognizable

P

PFA

Regular