Today's learning goals

- State and use the Church-Turing thesis.
- Describe several variants of Turing machines and informally explain why they are equally expressive.
- Explain what it means for a problem to be decidable.
- Justify the use of encoding.
- Give examples of decidable problems.
Consider the TM $M = \"On input w,\
1. Run M_1 on w. If M_1 rejects, rejects. If M_1 accepts, go to 2.
2. Run M_2 on w. If M_2 accepts, accept. If M_2 rejects, reject.\"

What kind of construction is this?
A. Formal definition of TM
B. Implementation-level description of TM
C. High-level description of TM
D. I don't know.

What's $L(M)$?
Is M a decider?
Describing TMs

- **Formal definition**: set of states, input alphabet, tape alphabet, transition function, state state, accept state, reject state.

- **Implementation-level definition**: English prose to describe Turing machine head movements relative to contents of tape.

- **High-level description**: Description of algorithm, without implementation details of machine. As part of this description, can "call" and run another TM as a subroutine.
Subroutines

Consider the TM \(M \) = "On input \(w \),

1. Run \(M_1 \) on \(w \). If \(M_1 \) rejects, rejects. If \(M_1 \) accepts, go to 2.
2. Run \(M_2 \) on \(w \). If \(M_2 \) accepts, accept. If \(M_2 \) rejects, reject."

Claim: \(M \) decides \(L_1 \cap L_2 \)

\[
\begin{align*}
&\text{If } M \text{ decides } L, \\
&M_2 \quad L_2
\end{align*}
\]

\[
\begin{align*}
&M \text{ decides } L_1 \cap L_2
\end{align*}
\]
will not work for recognizing M(x). If it accepts, then accept.

M(x):

\[M(x) \text{ runs } \text{M}_1 \text{ or } \text{M}_2 \text{ for } x \in \Sigma \]

if M(x) loops, return accept.

\[\text{Run } \text{M}_1 \text{ or } \text{M}_2 \text{ as specified. If it accepts, accept. Otherwise, return reject.} \]

\[\text{if either accepts, accept.} \]

recognize L, L'
High-level description = Algorithm

- Wikipedia "self-contained step-by-step set of operations to be performed"
- CSE 20 textbook "An algorithm is a finite sequence of precise instructions for performing a computation or for solving a problem."

Each algorithm can be implemented by some Turing machine.

Church-Turing thesis
Variants of TMs

• Scratch work, copy input, …
• Parallel computation
• Printing vs. accepting
• More flexible transition function
 • Can "stay put"
 • Can "get stuck"
 • lots of examples in exercises

Multiple tapes
Nondeterminism
Enumerators

All these models are equally expressive!

Also: wildly different models
• λ-calculus, Post canonical systems, URMs, etc.
"Equally expressive"

Model 1 is **equally expressive** as Model 2 iff
- every language recognized by some machine in Model 1 is recognizable by some machine in Model 2, **and**
- every language recognized by some machine in Model 2 is recognizable by some machine in Model 1.

e.g. DFA, NFA equally expressive
Nondeterministic TMs

Transition function

\[Q \times \Gamma \rightarrow P(Q \times \Gamma \times \{L,R\}) \]

Sketch of proof of equivalence:

To simulate nondeterministic machine: Use 3 tapes: "read-only" input tape, simulation tape, tape tracking nondeterministic branching.
Multitape TMs

- As part of construction of machine, declare some finite number of tapes that are available.
- Input given on tape 1, rest of the tapes start blank.
- Each tape has its own read/write head.
- Transition function
 \[Q \times \Gamma^k \rightarrow Q \times \Gamma^k \times \{L,R\}^k \]

Sketch of proof of equivalence:

To simulate multiple tapes with one tape: Use delimiter to keep tape contents separate, use special symbol to indicate location of each read/write head.
Very different model: Enumerators

Produce language as output rather than recognize input

Finite State Control

Unlimited work tape

Printer

Computation proceeds according to transition function.

At any point, machine may "send" a string to printer.

$L(E) = \{ w \mid E \text{ eventually, in finite time, prints } w \}$
Set of all strings

"For each Σ, there is an enumerator whose language is the set of all strings over Σ.

Proof: High level description of E
Theorem: A language L is Turing-recognizable iff some enumerator enumerates L.

Proof:

1. Assume L is Turing-recognizable. WTS some enumerator enumerates it.

2. Assume L is enumerated by some enumerator. WTS L is Turing-recognizable.
Assume the enumerator E enumerates L. WTS L is Turing-recognizable.

We'll use E in a subroutine for high-level description of Turing machine M that will recognize L.
Define M as follows: M = "On input w,
1. Run E. Every time E prints a string, compare it to w.
2. If w ever appears as the output of E, accept."

Correctness?
Assume L is Turing-recognizable. WTS some enumerator enumerates it.

Let M be a TM that recognizes L. We'll use M in a subroutine for high-level description of enumerator E.

Let s_1, s_2, \ldots be a list of all strings in Σ^*. Define E as follows:

$E = "\text{Repeat the following for each value of } i=1,2,3\ldots$

1. Run M for i steps on each input s_1, \ldots, s_i
2. If any of the i computations of M accepts, print out the accepted string."

Correctness?
<table>
<thead>
<tr>
<th>M is TM that recognizes L</th>
<th>D is TM that decides L</th>
<th>E is enumerator that enumerates L</th>
</tr>
</thead>
<tbody>
<tr>
<td>If string w is in L</td>
<td>accept</td>
<td>accept</td>
</tr>
<tr>
<td>then \ldots</td>
<td></td>
<td>print w at some point</td>
</tr>
<tr>
<td>If string w is not in</td>
<td>reject</td>
<td>reject</td>
</tr>
<tr>
<td>L then \ldots</td>
<td></td>
<td>never print w</td>
</tr>
<tr>
<td></td>
<td>or loop</td>
<td></td>
</tr>
</tbody>
</table>
At start of CSE 105…

- Pick a model of computation
- Study what problems it can solve
- Prove its limits

Classification: is input of type A or not?

Decision problem

\{ w | w is of type A \}

PRIME = \{ 2, 3, 5, 7, … \}

SORTED = \{ <1,3>, <-1, 8, 17> … \}

Decision problems are coded by sets of strings
By definition, TM inputs are **strings**

To define TM M:

"On input w ...

1. ..
2. ..
3. ...

For inputs that aren't strings, we have to **encode the object** (represent it as a string) first

Notation:

- $<O>$ is the **string** that represents (encodes) the object O
- $<O_1, ..., O_n>$ is the single string that represents the tuple of objects $O_1, ..., O_n$
Encoding inputs

Payoff: problems we care about can be reframed as languages of strings

e.g. "Recognize whether a string is a palindrome."
 \[\{ w \mid w \in \{0,1\}^* \text{ and } w = w^R \} \]
e.g. "Check whether a string is accepted by a DFA."
 \[\{ <B,w> \mid B \text{ is a DFA over } \Sigma, w \in \Sigma^*, \text{ and } w \text{ is in } L(B) \} \subset \{0,1\}^* \]
e.g. "Check whether the language of a PDA is infinite."
 \[\{ <A> \mid A \text{ is a PDA and } L(A) \text{ is infinite} \} \]
Computational problems

A computational problem is **decidable** iff the language encoding the problem instances is decidable
Computational problems

Sample computational problems and their encodings:

- **A_{DFA}** "Check whether a string is accepted by a DFA."
 \{ <B,w> | B is a DFA over Σ, w in Σ*, and \(w \) is in L(B) \}

- **E_{DFA}** "Check whether the language of a DFA is empty."
 \{ <A> | A is a DFA over Σ, L(A) is empty \}

- **EQ_{DFA}** "Check whether the languages of two DFAs are equal."
 \{ <A, B> | A and B are DFAs over Σ, L(A) = L(B) \}

FACT: all of these problems are decidable!
Proving decidability

Claim: \(A_{DFA} \) is decidable

Proof: WTS that \(\{ <B, w> \mid B \text{ is a DFA over } \Sigma, w \in \Sigma^*, \text{ and } w \text{ is in } L(B) \} \) is decidable.

Step 1: construction

How would you check if \(w \) is in \(L(B) \)?
Proving decidability

Define TM M_1 by: $M_1 = \text{"On input } <B,w>\text{"}$

1. Check whether B is a valid encoding of a DFA and w is a valid input for B. If not, reject.
2. Simulate running B on w (by keeping track of states in B, transition function of B, etc.)
3. When the simulation ends, by finishing to process all of w, check current state of B: if it is final, accept; if it is not, reject."
Proving decidability

Step 1: construction
Define TM M_1 by $M_1 = \text{"On input } <B,w>\text{"}
1. Check whether B is a valid encoding of a DFA and w is a valid input for B. If not, reject.
2. Simulate running B on w (by keeping track of states in B, transition function of B, etc.)
3. When the simulation ends, by finishing to process all of w, check current state of B: if it is final, accept; if it is not, reject."

Step 2: correctness proof
WTS (1) $L(M_1) = A_{DFA}$ and (2) M_1 is a decider.
Proving decidability

Claim: E_{DFA} is decidable
Proof: WTS that $\{ \langle A \rangle \mid A$ is a DFA over Σ, $L(A)$ is empty $\}$ is decidable.
Proving decidability

Claim: E_{DFA} is decidable
Proof: WTS that $\{ <A> \mid A$ is a DFA over Σ, $L(A)$ is empty $\}$ is decidable.

e.g. $<$ is in E_{DFA}; $<$

$>$ is not in E_{DFA}

TM deciding E_{DFA} should accept and should reject
Proving decidability

Claim: E_{DFA} is decidable

Proof: WTS that \{ <A> | A is a DFA over Σ, $L(A)$ is empty \} is decidable.

Idea: give high-level description

Step 1: construction

What condition distinguishes between DFA that accept *some* string and those that don't accept *any*?
Proving decidability

Claim: E_{DFA} is decidable

Proof: WTS that $\{ <A> \mid A \text{ is a DFA over } \Sigma, \text{ } L(A) \text{ is empty} \}$ is decidable.

Idea: give high-level description

Step 1: construction

What condition distinguishes between DFA that accept *some* string and those that don't accept *any*?
Proving decidability

Claim: \(\text{E}_{\text{DFA}} \) is decidable.

Proof: WTS that \(\{ <A> | A \text{ is a DFA over } \Sigma, L(A) \text{ is empty} \} \) is decidable. **Idea:** give high-level description

Step 1: construction

Define TM \(M_2 \) by: \(M_2 = \) "On input \(<A>\):

1. Check whether \(A \) is a valid encoding of a DFA; if not, reject.
2. Mark the start state of \(A \).
3. Repeat until no new states get marked:
 i. Loop over states of \(A \) and mark any unmarked state that has an incoming edge from a marked state.
4. If no final state of \(A \) is marked, accept; otherwise, reject."
Proving decidability

Step 1: construction
Define TM M_2 by: $M_2 = \text{"On input } \langle A \rangle:\$
1. Check whether A is a valid encoding of a DFA; if not, reject.
2. Mark the state state of A.
3. Repeat until no new states get marked:
 i. Loop over states of A and mark any unmarked state that has an incoming edge from a marked state.
4. If no final state of A is marked, accept; otherwise, reject.

Step 2: correctness proof
WTS (1) $L(M_2) = E_{DFA}$ and (2) M_2 is a decider.
Proving decidability

Claim: EQ_{DFA} is decidable

Proof: WTS that \{ $<A, B>$ | A, B are DFAs over Σ, $L(A) = L(B)$ \} is decidable. **Idea:** give high-level description

Step 1: construction

Will we be able to simulate A and B?

What does set equality mean?

Can we use our previous work?
Proving decidability

Claim: EQ_{DFA} is decidable

Proof: WTS that $\{ <A, B> | A, B \text{ are DFAs over } \Sigma, L(A) = L(B) \}$ is decidable. Idea: give high-level description

Step 1: construction

Will we be able to simulate X and Y?

What does set equality mean?

Can we use our previous work?
Proving decidability

Claim: \(EQ_{DFA} \) is decidable

Proof: WTS that \(\{ <A, B> | A, B \text{ are DFAs over } \Sigma, L(A) = L(B) \} \) is decidable. Idea: give high-level description

Step 1: construction

\[X = Y \iff ((X \cap Y^c) \cup (Y \cap X^c)) = \emptyset \]

Very high-level:
Build new DFA recognizing symmetric difference of A, B. Check if this set is empty.
Proving decidability

Claim: EQ_{DFA} is decidable

Proof: WTS that $\{ <A, B> \mid A, B$ are DFAs over Σ, $L(A) = L(B) \}$ is decidable. Idea: give high-level description

Step 1: construction

Define TM M_3 by: $M_3 =$ "On input $<A,B>$:

1. Check whether A,B are valid encodings of DFA; if not, reject.
2. Construct a new DFA, D, from A,B using algorithms for complementing, taking unions of regular languages such that $L(D) =$ symmetric difference of A and B.
3. Run machine M_2 on $<D>$.
4. If it accepts, accept; if it rejects, reject."
Proving decidability

Step 1: construction
Define TM M_3 by: $M_3 = "On input <A,B>:
1. Check whether A,B are valid encodings of DFA; if not, reject.
2. Construct a new DFA, D, from A,B using algorithms for complementing, taking unions of regular languages such that $L(D) = \text{symmetric difference of } A \text{ and } B$.
3. Run machine M_2 on <D>.
4. If it accepts, accept; if it rejects, reject."

Step 2: correctness proof
WTS (1) $L(M_3) = \text{EQ}_{\text{DFA}}$ and (2) M_3 is a decider.
Techniques

• **Subroutines**: can use decision procedures of decidable problems as subroutines in other algorithms
 - A_{DFA}
 - E_{DFA}
 - EQ_{DFA}

• **Constructions**: can use algorithms for constructions as subroutines in other algorithms
 - Converting DFA to DFA recognizing complement (or Kleene star).
 - Converting two DFA/NFA to one recognizing union (or intersection, concatenation).
 - Converting NFA to equivalent DFA.
 - Converting regular expression to equivalent NFA.
 - Converting DFA to equivalent regular expression.