CSE 105
THEORY OF COMPUTATION

Winter 2022

https://cseweb.ucsd.edu/classes/wi22/cse105-a/
Today's learning goals

- Explain the limits of the class of regular languages
- Justify why the Pumping Lemma is true
- Apply the Pumping Lemma in proofs of nonregularity
- Identify some nonregular sets

Midterm 1 is next Wednesday (2/2)!
All roads lead to ... regular sets?

Are there any languages over \{0,1\} that are not regular?

A. Yes: a language that is recognized by an NFA but not any DFA.

A. Yes: there is some infinite language of strings over \{0,1\} that is not described by any regular expression.

B. No: all languages over \{0,1\} are regular because that's what it means to be a language.

C. No: for each set of strings over \{0,1\}, some DFA recognizes that set.

A. I don't know.
Birds' eye view

- All languages over Σ
- Regular languages over Σ
- Finite languages over Σ
Counting

• **Fact:** a countable union of countable sets is countable.

• **Fact:** \(\{0,1\}^*\) is countably infinite. \(X^*\) is countably infinite when \(X\) is finite.

• **Fact:** the set of subsets of a countably infinite set is uncountable.

• **Fact:** there are countably many DFA with \(\Sigma=\{0,1\}\)

• **Fact:** there are countably many regular languages over \(\{0,1\}\)
Counting

- Fact: a countable union of countable sets is countable.
- Fact: \(\{0,1\}\) is countably infinite.
- Fact: \(X\) is countably infinite when \(X\) is finite.
- Fact: the set of subsets of a countably infinite set is uncountable.
- Fact: there are countably many DFA with \(\Sigma = \{0,1\}\).
- Fact: there are countably many regular languages over \(\{0,1\}\).
- Uncountably many languages over \(\{0,1\}\)
- Countably many regular languages over \(\{0,1\}\)
Birds' eye view

- All languages over Σ
- Regular languages over Σ
- Finite languages over Σ
Proving nonregularity

How can we prove that a set is non-regular?

A. Try to design a DFA that recognizes it and, if the first few attempts don't work, conclude there is none that does.

B. Prove that it's a strict subset of some regular set.

C. Prove that it's the union of two regular sets.

D. Prove that its complement is not regular.

E. I don't know.
Where we stand

• There exist non-regular sets.

• If we know that some sets are not regular, we can conclude others are also not regular judiciously reasoning using closure properties of class of regular languages.

• No example of a specific regular set ... yet.
Bounds on DFA

- in DFA, memory = states

- Automata can only "remember"…
 - …finitely far in the past
 - …finitely much information

- If a computation path visits the same state more than once, the machine can't tell the difference between the first time and future times it visited that state.

\[
W \in L \rightarrow x_2 \epsilon \ L \quad \text{if} \quad y \epsilon \ L \\
\delta^*(q_{Init}, W) = \delta^*(q_{Init}, x) = \delta^*(q_{Final}, xyYZ)
\]
Example!

\[L = \{ 0^n1^n \mid n \geq 0 \} \]

What are some strings in this set?
What are some strings not in this set?

Compare to \(L(0^*1^*) = \{ 0^n1^m : n, m > 0 \} \)

Design a DFA? NFA?
Example!

\[\{ 0^n1^n \mid n \geq 0 \} \]

What are some strings in this set? What are some strings not in this set?

Compare to \(L(0^*1^*) \)

Design a DFA? NFA?
Pumping

• Focus on computation path through DFA
Pumping

- Focus on computation path through DFA
Pumping

- Focus on computation path through DFA

Idea: if one long string is accepted, then many other strings have to be accepted too
Pumping Lemma

If A is a regular language, then there is a number p (the pumping length) where, if s is any string in A of length at least p, then s may be divided into three pieces, $s = xyz$ such that

- $|y| > 0$, and
- for each $i \geq 0$, $xy^iz \in A$,
- $|xy| \leq p$.

$1 \times |1 + |y|| \leq p$
Pumping Lemma

If \(A \) is a regular language, then there is a number \(p \) (the pumping length) where, if \(s \) is any string in \(A \) of length at least \(p \), then \(s \) may be divided into three pieces, \(s = x y z \) such that

- \(|y| > 0 \), and
- for each \(i \geq 0 \), \(xy^i z \in A \),
- \(|xy| \leq p \).
Negation

- Pumping lemma "There is p, where p is a pumping length for L"

- Given a specific number p, it being a pumping length for L means

\[\forall w \left(|w| \geq p \land w \in L \right) \rightarrow \exists x \exists y \exists z \left(w = xyz \land |y| > 0 \land |xy| \leq p \land \forall i (xy^iz \in L) \right) \]

- So p not being a pumping length of L means

\[\exists w \left(|w| \geq p \land w \in L \land \forall x \forall y \forall z \left((w = xyz \land |y| > 0 \land |xy| \leq p) \rightarrow \exists i (xy^iz \notin L) \right) \right) \]
Proof strategy

To prove that a language L is not regular

• Assume towards a contradiction that it is.
• Use Pumping Lemma to give p, a pumping length for L.
• Show that p actually isn't a pumping length for L.
• Conclude that L is not regular.
Using the Pumping Lemma

Claim: The set $L = \{0^n1^n \mid n \geq 0\}$ is not regular.
Using the Pumping Lemma

Claim: The set \(L = \{0^n1^n \mid n \geq 0\} \) is not regular.

Proof: Assume, towards a contradiction, that \(L \) is regular.

Pumping Lemma gives property of all regular sets. Can we get a contradiction by assuming that the Pumping Lemma applies to this set?
Using the Pumping Lemma

Claim: The set \(L = \{0^n1^n \mid n \geq 0\} \) is not regular.

Proof:
Assume towards a contradiction \(L \) is regular.

So by Pumping Lemma, \(L \) has a pumping length, call it \(p \).

FACT: \(p \) is a pumping length for \(L \) (by definition).

CLAIM: \(p \) is not a pumping length for \(L \).

Conclude: contradiction!
Using the Pumping Lemma

Claim: The set \(L = \{0^n1^n \mid n \geq 0\} \) is not regular.

Proof: ...In particular, this means that every string in \(L \) that is of length \(p \) or more can be "pumped".

Goal: pick a string \(s \) in \(L \) of length greater than or equal to \(p \) such that any division of \(s \) as \(s = xyz \) with \(|y| > 0 \) and \(|xy| \leq p \) gives some value \(i \geq 0 \) with \(xy^iz \) not in \(L \).

So we have a contradiction, and \(L \) is not regular.
Using the Pumping Lemma

Claim: The set \(L = \{0^n1^n \mid n \geq 0\} \) is not regular.

Proof: …

Goal: pick a string \(s \) in \(L \) of length greater than or equal to \(p \) such that any division of \(s \) as \(s = xyz \) with \(|y| > 0 \) and \(|xy| \leq p \) gives some value \(i \geq 0 \) with \(xy^iz \) not in \(L \)

Choose \(s = 0^p1^p \). Consider any \(s = xyz \) with \(|y| > 0, |xy| \leq p \).

\[x \in L, y, z \notin L \]
Using the Pumping Lemma

Claim: The set $L = \{0^n1^n \mid n \geq 0\}$ is not regular.

Proof: ...

Goal: pick a string s in L of length greater than or equal to p such that any division of s as $s = xyz$ with $|y| > 0$ and $|xy| \leq p$ gives some value $i \geq 0$ with xy^iz not in L.

Choose $s = 0^p1^p$. Consider any $s = xyz$ with $|y| > 0$, $|xy| \leq p$.

Since $|xy| \leq p$, $x = 0^k$, $y = 0^m$, $z = 0^r1^p$ with $k + m + r = p$, $m > 0$.

$k > 0 \quad m > 1 \quad k + m + r = p$
Using the Pumping Lemma

Claim: The set $L = \{0^n1^n | n \geq 0\}$ is not regular.

Proof: …

Goal: pick a string s in L of length greater than or equal to p such that any division of s as $s = xyz$ with $|y| > 0$ and $|xy| \leq p$ gives some value $i \geq 0$ with xy^iz not in L.

Choose $s = 0^p1^p$. Consider any $s = xyz$ with $|y| > 0$, $|xy| \leq p$.

Since $|xy| \leq p$, $x = 0^k$, $y = 0^m$, $z = 0^r1^p$ with $k + m + r = p$, $m > 0$.

Picking $i = 0$: $xy^iz = xz = 0^k0^m1^p = 0^{k+r}1^p$, not in $L!$
Using the Pumping Lemma

Claim: The set \(L = \{0^n1^n \mid n \geq 0\} \) is not regular.

Proof: …

Goal: pick a string \(s \) in \(L \) of length greater than or equal to \(p \) such that any division of \(s \) as \(s = xyz \) with \(|y| > 0 \) and \(|xy| \leq p \) gives some value \(i \geq 0 \) with \(xy^iz \) not in \(L \.

Choose \(s = 0^p1^p \). Consider any \(s = xyz \) with \(|y| > 0 \), \(|xy| \leq p \.

Since \(|xy| \leq p \), \(x = 0^k \), \(y = 0^m \), \(z = 0^r1^p \) with \(m+n+r = p \), \(m > 0 \).

Picking \(i = 0 \): \(xy^iz = xz = 0^k0^r1^p = 0^{k+r}1^p \), not in \(L \! \). This is a contradiction with the Pumping Lemma applied to \(L \), so \(L \) must not be regular.
Another example

Claim: The set \(\{a^mb^ma^n \mid m,n \geq 0 \} \) is not regular.

Proof: …Consider the string \(s = \ldots \).
You must pick \(s \) carefully: we want \(|s| \geq p\) and \(s \) in \(L \). Now we will prove a contradiction with the statement "\(s \) can be pumped".

Which choices of \(s \) cannot be used to complete the proof?
A. \(s = a^pb^p \)
B. \(s = ab^pa \)
C. \(s = a^pb^pa^p \)
D. \(s = a^pbba^p \)
E. None of the above (all of these choices work).
Another example

Claim: The set \(\{a^n b^m a^n \mid m,n \geq 0\} \) is not regular.

Proof: …Consider the string \(s = \ldots \) …
You must pick \(s \) carefully: we want \(|s| \geq p \) and \(s \) in \(L \). Now we will prove a contradiction with the statement "\(s \) can be pumped".

Consider an arbitrary choice of \(x,y,z \) such that \(s = xyz, \ |y| > 0, \ |xy| \leq p \). This means that… What properties are guaranteed about \(x,y,z \)?

Consider \(i = \ldots \) In this case, \(xy^i z = \ldots \), which is not in \(L \), a contradiction with the Pumping Lemma applying to \(L \) and so \(L \) is not regular.
And another

Claim: The set \(\{w w^R \mid w \text{ is a string over } \{0,1\} \} \) is not regular.

Proof: …Consider the string \(s = \ldots \) …

You must pick \(s \) carefully: we want \(|s| \geq p\) and \(s \) in \(L \). Now we will prove a contradiction with the statement "\(s \) can be pumped" Consider \(i = \ldots \)

Which \(s \) and \(i \) let us complete the proof?

A. \(s = 0^p0^p, i=2 \)
B. \(s = 0110, i=0 \)
C. \(s = 0^p110^p, i=1 \)
D. \(s = 1^p001^p, i=3 \)
E. I don't know
How do we choose i?

Claim: The set $\{0^j1^k \mid j, k \geq 0 \text{ and } j \geq k \}$ is not regular.

Proof: …Consider the string $s = \ldots$.

You must pick s carefully: we want $|s| \geq p$ and s in L. Now we will prove a contradiction with the statement "s can be pumped". Consider $i = \ldots$.

Which s and i let us complete the proof?

A. $s = 0^p1^p$, $i = 2$
B. $s = 0^p1^p$, $i = p$
C. $s = 0^p1^p$, $i = 1$
D. $s = 0^p1^p$, $i = 0$
E. I don't know
Regular sets: not the end of the story

- Many **nice / simple / important** sets are not regular
- Limitation of the finite-state automaton model
 - Can't "count"
 - Can only remember finitely far into the past
 - Can't backtrack
 - Must make decisions in "real-time"
- We know computers are more powerful than this model…

Which conditions should we relax?
The next model of computation

• Idea: allow *some* memory of unbounded size
• How?
 • Generalization of regular expressions
 • Generalization for DFA

Context-free grammars
Pushdown Automata