Today's learning goals

- Design NFA recognizing a given language
- Convert an NFA (with or without spontaneous moves) to a DFA recognizing the same language
- Decide whether or not a string is described by a given regular expression
- Design a regular expression to describe a given language
- Convert between regular expressions and automata
Nondeterministic finite automata

- "Guess" some stage of input at which switch modes
- "Guess" one of finite list of criteria to meet
Acceptance in an NFA

An NFA \((Q, \Sigma, \delta, q_0, F)\) accepts a string \(w\) in \(\Sigma^*\) iff we can write \(w = y_1y_2 \cdots y_m\) where each \(y_i \in \Sigma_e\) and there is a sequence of states \(r_0, \ldots, r_m \in Q\) such that:

1. \(r_0 = q_0\)
2. \(r_{i+1} \in \delta(r_i, y_{i+1})\) for each \(i = 0, \ldots, m - 1\)
3. \(r_m \in F\).

\(\delta(r, y)\) is the set of states you can reach from \(r\) on input \(y\).

\(\delta^*(r, w)\) is the set of states you can reach from \(r\) on input \(w\).
NFA
Simulating NFA with DFA

Not quite a closure proof, but …

Proof:

Given name variables for sets, machines assumed to exist.

WTS state goal and outline plan.

Construction using objects previously defined + new tools working towards goal. Give formal definition and explain.

Correctness prove that construction works.

Conclusion recap what you've proved.
Simulating NFA with DFA

For any language recognized by an NFA, there is a DFA that recognizes this language.

Proof:

Given a language recognized by NFA \(N = (Q, \Sigma, \delta, q_0, F) \),

WTS there exists a DFA \(M \) with \(L(M) = A \).

Construction

Correctness

Conclusion
Which of the following strings is accepted by this NFA?

A. The empty string
B. 01
C. 111
D. 0
E. More than one of the above.
Subset construction

Given A, a language recognized by NFA $N = (Q, \Sigma, \delta, q_0, F)$

WTS there exists a DFA M with $L(M) = A$

Construction Define $M = (Q', \Sigma, \delta', q'_0, F')$ with

- $Q' = \text{the power set of } Q = \{ X | X \text{ is a subset of } Q \}$
- $q'_0 = \{ \text{states } N \text{ can be in before first input symbol read} \}$
- $F' = \{ \}$
- $\delta' (\text{ }) =$
Which states can this NFA be in before first input symbol is read?

A. q0
B. any state
C. q0, q1
D. q0, q4
E. q0, q1, q4
Subset construction

Given A, a language recognized by NFA $N = (Q, \Sigma, \delta, q_0, F)$

WTS there exists a DFA M with $L(M) = A$

Construction Define $M = (Q', \Sigma, \delta', q_0', F')$ with

- $Q' = \text{the power set of } Q = \{ X \mid X \text{ is a subset of } Q \}$
- $q_0' = \{ q_0 \} \cup \delta((q_0, \varepsilon)) \cdots \delta^*(q_0, \varepsilon)$
- $F' = \{ \}$
- $\delta' (\text{ }) =$
Subset construction

Given A, a language recognized by NFA $N = (Q, \Sigma, \delta, q_0, F)$

WTS there exists a DFA M with $L(M) = A$

Construction Define $M = (Q', \Sigma, \delta', q_0', F')$ with

- $Q' = \text{the power set of } Q = \{ X \mid X \text{ is a subset of } Q \}$
- $q_0' = \{ q_0 \} \cup \delta((q_0, \varepsilon))$ …
- $F' = \{ \text{guarantee at least one computation is successful} \}$
- $\delta' () = F' = \{ X \subseteq Q' : X \cap F \text{ not empty} \}$
What does it mean for a set of states X to guarantee at least one computation is successful?

A. X is a subset of F
B. X = F
C. X ∩ F is nonempty
D. X is an element of F
E. None of the above.

From NFA to DFA
Subset construction

Given A, a language recognized by NFA $N = (Q, \Sigma, \delta, q_0, F)$

WTS there exists a DFA M with $L(M) = A$

Construction Define $M = (Q', \Sigma, \delta', q_0', F')$ with
- $Q' = \text{the power set of } Q = \{ X \mid X \text{ is a subset of } Q \}$
- $q_0' = \{ q_0 \} \cup \delta((q_0, \varepsilon))$
- $F' = \{ X \mid X \text{ is a subset of } Q \text{ and } X \cap F \text{ is nonempty} \}$
- $\delta'((X, x)) = \{ \text{union of } \delta(q, x) \text{ for all } q \in X \}$

\[
X = \{ q_1, q_2, q_3 \} \\
\delta(q, x) \cup \delta(q_2, x)
\]
Subset construction

Given A, a language recognized by NFA $N = (Q, \Sigma, \delta, q_0, F)$

WTS there exists a DFA M with $L(M) = A$

Construction Define $M = (Q', \Sigma, \delta', q_0', F')$ with

- Q' = the power set of $Q = \{ X \mid X \text{ is a subset of } Q \}$
- q_0' = $\{ q_0 \} \cup \delta((q_0, \varepsilon))$...
- F' = $\{ X \mid X \text{ is a subset of } Q \text{ and } X \cap F \text{ is nonempty} \}$
- $\delta'((X, x)) = \{ q \in Q \mid q \text{ is in } \delta(r, x) \text{ for some } r \in X \text{ or accessible via spontaneous moves} \}$
Subset construction examples

DFA
Subset construction examples
Subset construction examples
Recap

Regular sets of strings i.e., those that aren't too complicated are those that are
• the language of some DFA, or equivalently,
• the language of some NFA.

If a set of strings can be expressed as the result of complement, union, intersection, concatenation, Kleene star of regular languages, then it itself is regular.
Regular expressions

- Can all regular languages be expressed as those that are built up from very simple languages using the regular operations?
DFAs vs Regular Expressions

• DFAs – check if a given word is in the language

• Regular Expressions – generate all works in the language
Inductive application of closure

R is a regular expression over Σ if

1. $R = a$, where $a \in \Sigma$ \(L(R) = \{a\} \)
2. $R = \varepsilon$ \(L(R) = \{\varepsilon\} \)
3. $R = \emptyset$ \(L(R) = \{\} \)
4. $R = (R_1 \cup R_2)$, where R_1, R_2 are themselves regular expressions

\[L(R) = L(R_1) \cup L(R_2) \]
5. $R = (R_1 \circ R_2)$, where R_1, R_2 are themselves regular expressions

\[L(R) = L(R_1) \times L(R_2) \]
6. (R_1^*), where R_1 is a regular expression

\[L(R^*) = L(R)^* \]

\(\Sigma \) is shorthand for \((0 \cup 1)\) if $\Sigma = \{0,1\}$, Parentheses may be omitted, R^+ means RR^*, R^k means R concatenated with itself k times

Watch out for overloaded symbols!
The language described by a regular expression, $L(R)$:

- $L((0 \cup 1) \cup 1) = \{0, 1\}$
- $L((\emptyset \cup \emptyset)) = \{\emptyset\}$
- $L((\Sigma \Sigma \Sigma \Sigma)^*) = \{w \in \Sigma^* \text{ length is a multiple of 4}\}$
- $L(1^* \emptyset 0) = \{\emptyset\}$
- $L(\emptyset ^* \emptyset 0) = \{\emptyset\}$

1. $R = a$, where $a \in \Sigma$
2. $R = \epsilon$
3. $R = \emptyset$
4. $R = (R_1 \cup R_2)$
5. $R = (R_1 \circ R_2)$
6. (R_1^*)
Which of the following strings is not in the language described by

$L = \{013 \mid L_0\{E\} = \{010, E\} ; 5013\}$

$L_0 \{\epsilon\} = \{\}$

$(((00)^* (11)) \cup 01)^*$

A. 00
B. 01
C. 1101
D. ε
E. I don't know
Let L be the language over \{a,b\} described by the regular expression
\[((a \cup \emptyset) \ b^*)^* \]
Which of the following is not true about L?
A. Some strings in L have equal numbers of a's and b's
B. L contains the string aaaaaaa
C. a's never follow b's in any string in L
D. L can also be represented by the regular expression (ab*)^*
E. More than one of the above.
Regular expressions in practice

- **Compilers**: first phase of compiling transforms Strings to Tokens **keywords, operators, identifiers, literals**
 - One regular expression for each token type

- **Other software tools**: grep, Perl, Python, Java, Ruby, …
Theorem: A language is regular if and only if some regular expression describes it.

Lemma 1.55: If a language is described by a regular expression, then it is regular. (can construct DFA/NFA accepting it)

Lemma 1.60: If a language is regular, then it is described by some regular expression