Feedforward neural nets

CSE 250B
Outline

1 Architecture
2 Expressivity
3 Learning
The architecture
The value at a hidden unit

\[h \]

\[h = (w_1 z_1 + w_2 z_2 + \cdots + w_m z_m + b) \]

• \((\cdot)\) is a nonlinear activation function, e.g. "rectified linear" \(u \xrightarrow[]{} \max(0, u)\)

How is \(h\) computed from \(z_1, \ldots, z_m\)?
The value at a hidden unit

$z_1 \rightarrow h \rightarrow z_2 \rightarrow \cdots \rightarrow z_m$

How is h computed from z_1, \ldots, z_m?

- $h = \sigma(w_1 z_1 + w_2 z_2 + \cdots + w_m z_m + b)$
- $\sigma(\cdot)$ is a nonlinear activation function, e.g. “rectified linear”

$$\sigma(u) = \begin{cases}
 u & \text{if } u \geq 0 \\
 0 & \text{otherwise}
\end{cases}$$
Common activation functions

- **Threshold function or Heaviside step function**
 \[\sigma(z) = \begin{cases}
 1 & \text{if } z \geq 0 \\
 0 & \text{otherwise}
 \end{cases} \]

- **Sigmoid**
 \[\sigma(z) = \frac{1}{1 + e^{-z}} \]

- **Hyperbolic tangent**
 \[\sigma(z) = \tanh(z) \]

- **ReLU (rectified linear unit)**
 \[\sigma(z) = \max(0, z) \]
Why do we need nonlinear activation functions?
The output layer

Classification with k labels: want k probabilities summing to 1.

\[
\begin{align*}
 y_1 & \quad y_2 & \quad \cdots & \quad y_k \\
 z_1 & \quad z_2 & \quad z_3 & \quad \cdots & \quad z_m
\end{align*}
\]
The output layer

Classification with k labels: want k probabilities summing to 1.

- y_1, \ldots, y_k are linear functions of the parent nodes z_i.
- Get probabilities using softmax:

$$\Pr(\text{label } j) = \frac{e^{y_j}}{e^{y_1} + \cdots + e^{y_k}}.$$
The complexity

embali

\[y, \quad h^{(\ell)}, \quad \vdots, \quad h^{(2)}, \quad h^{(1)}, \quad x \]
Outline

1 Architecture

2 Expressivity

3 Learning
Let $f : \mathbb{R}^d \to \mathbb{R}$ be any continuous function. There is a neural net with a single hidden layer that approximates f arbitrarily well.
Approximation capability

Let $f : \mathbb{R}^d \to \mathbb{R}$ be any continuous function. There is a neural net with a single hidden layer that approximates f arbitrarily well.

- The hidden layer may need a lot of nodes.
- For certain classes of functions:
 - Either: one hidden layer of enormous size
 - Or: multiple hidden layers of moderate size
Stone-Weierstrass theorem I

If \(f : [a, b] \to \mathbb{R} \) is continuous then there is a sequence of polynomials \(P_n \) such that \(P_n \) has degree \(n \) and

\[
\sup_{x \in [a, b]} |P_n(x) - f(x)| \to 0 \text{ as } n \to \infty.
\]
Stone-Weierstrass theorem II

Let $K \subset \mathbb{R}^d$ be some bounded set.

Suppose there is a collection of functions \mathcal{A} such that:

- \mathcal{A} is an *algebra*: closed under addition, scalar multiplication, and multiplication.
- \mathcal{A} does not vanish on K: for any $x \in K$, there is some $h \in \mathcal{A}$ with $h(x) \neq 0$.
- \mathcal{A} separates points in K: for any $x \neq y \in K$, there is some $h \in \mathcal{A}$ with $h(x) \neq h(y)$.

Then for any continuous function $f : K \rightarrow \mathbb{R}$ and any $\epsilon > 0$, there is some $h \in \mathcal{A}$ with

\[
\sup_{x \in K} |f(x) - h(x)| \leq \epsilon.
\]
Example: exponentiated linear functions

For domain $K = \mathbb{R}^d$, let \mathcal{A} be all linear combinations of

$$\{e^{w \cdot x + b} : w \in \mathbb{R}^d, b \in \mathbb{R}\}.$$

1. Is an algebra.
2. Does not vanish.
3. Separates points.
Variation: RBF kernels

For domain $K = \mathbb{R}^d$, and any $\sigma > 0$, let \mathcal{A} be all linear combinations of

$$\{e^{-\|x-u\|^2/\sigma^2} : u \in \mathbb{R}^d\}.$$

Any continuous function is approximated arbitrarily well by \mathcal{A}.
A class of activation functions

For domain $K = \mathbb{R}^d$, let \mathcal{A} be all linear combinations of

$$\{\sigma(w \cdot x + b) : w \in \mathbb{R}^d, b \in \mathbb{R}\}$$

where $\sigma : \mathbb{R} \rightarrow \mathbb{R}$ is continuous and non-decreasing with

$$\sigma(z) \rightarrow \begin{cases} 1 & \text{if } z \rightarrow \infty \\ 0 & \text{if } z \rightarrow -\infty \end{cases}$$

This also satisfies the conditions of the approximation result.
Outline

1 Architecture
2 Expressivity
3 Learning
Learning a net: the loss function

Classification problem with \(k \) labels.

- Parameters of entire net: \(W \)
- For any input \(x \), net computes probabilities of labels:
 \[
 \Pr_W(\text{label} = j|x)
 \]
Learning a net: the loss function

Classification problem with k labels.

- Parameters of entire net: W
- For any input x, net computes probabilities of labels:
 \[\Pr_W(\text{label } = j | x) \]
- Given data set $(x^{(1)}, y^{(1)}), \ldots, (x^{(n)}, y^{(n)})$, loss function:
 \[L(W) = -\sum_{i=1}^{n} \ln \Pr_W(y^{(i)} | x^{(i)}) \]
 (also called **cross-entropy**).
Nature of the loss function

\[L(w) \]

convex LR loss function
Variants of gradient descent

Initialize W and then repeatedly update.

1. Gradient descent
 Each update involves the entire training set.

2. Stochastic gradient descent
 Each update involves a single data point.

3. Mini-batch stochastic gradient descent
 Each update involves a modest, fixed number of data points.
Derivative of the loss function

Update for a specific parameter: derivative of loss function wrt that parameter.
Chain rule

1. Suppose \(h(x) = g(f(x)) \), where \(x \in \mathbb{R} \) and \(f, g : \mathbb{R} \to \mathbb{R} \).

Then: \(h'(x) = g'(f(x)) f'(x) \)
Chain rule

1. Suppose $h(x) = g(f(x))$, where $x \in \mathbb{R}$ and $f, g : \mathbb{R} \to \mathbb{R}$.
 Then: $h'(x) = g'(f(x)) f'(x)$

2. Suppose z is a function of y, which is a function of x.

Then:

$$\frac{dz}{dx} = \frac{dz}{dy} \frac{dy}{dx}$$
A single chain of nodes

A neural net with one node per hidden layer:

\[x = h_0 \rightarrow h_1 \rightarrow h_2 \rightarrow h_3 \rightarrow \cdots \rightarrow h_\ell \]

For a specific input \(x \),

- \(h_i = \sigma(w_i h_{i-1} + b_i) \)
- The loss \(L \) can be gleaned from \(h_\ell \)
A single chain of nodes

A neural net with one node per hidden layer:

\[x = h_0 \quad h_1 \quad h_2 \quad h_3 \quad \cdots \quad h_\ell \]

For a specific input \(x \),

- \(h_i = \sigma(w_i h_{i-1} + b_i) \)
- The loss \(L \) can be gleaned from \(h_\ell \)

To compute \(\frac{dL}{dw_i} \) we just need \(\frac{dL}{dh_i} \):

\[
\frac{dL}{dw_i} = \frac{dL}{dh_i} \frac{dh_i}{dw_i} = \frac{dL}{dh_i} \sigma'(w_i h_{i-1} + b_i) h_{i-1}
\]
Backpropagation

- On a single forward pass, compute all the h_i.
- On a single backward pass, compute $dL/dh_\ell, \ldots, dL/dh_1$
Backpropagation

- On a single forward pass, compute all the h_i.
- On a single backward pass, compute $dL/dh_\ell, \ldots, dL/dh_1$

$$x = h_0 \quad h_1 \quad h_2 \quad h_3 \quad \cdots \quad h_\ell$$

From $h_{i+1} = \sigma(w_{i+1}h_i + b_{i+1})$, we have

$$\frac{dL}{dh_i} = \frac{dL}{dh_{i+1}} \frac{dh_{i+1}}{dh_i} = \frac{dL}{dh_{i+1}} \sigma'(w_{i+1}h_i + b_{i+1}) w_{i+1}$$
Two-dimensional examples

What kind of net to use for this data?

- Input layer: 2 nodes
- One hidden layer: H nodes
- Output layer: 1 node
- Input to hidden: linear functions, ReLU activation
- Hidden to output: linear function, sigmoid activation
Two-dimensional examples

What kind of net to use for this data?

- Input layer: 2 nodes
- One hidden layer: H nodes
- Output layer: 1 node
- Input \rightarrow hidden: linear functions, ReLU activation
- Hidden \rightarrow output: linear function, sigmoid activation
Example 1

How many hidden units should we use?
Example 1

\[H = 2 \]
Example 1

\[H = 2 \]
Example 2

How many hidden units should we use?
Example 2

\[H = 4 \]
Example 2

\[H = 4 \]
Example 2

\[H = 4 \]
Example 2

$H = 4$
Example 2

$H = 8$: overparametrized
Example 3

How many hidden units should we use?
Example 3

$H = 4$
Example 3

$H = 8$
Example 3

\[H = 16 \]
Example 3

\[H = 16 \]
Example 3

\[H = 16 \]
Example 3

\[H = 32 \]
Example 3

$H = 32$
Example 3

\[H = 32 \]
Example 3

\[H = 64 \]
Example 3

\[H = 64 \]
Example 3

\[H = 64 \]
PyTorch snippet

Declaring and initializing the network:

d, H = 2, 8
model = torch.nn.Sequential(
 torch.nn.Linear(d, H),
 torch.nn.ReLU(),
 torch.nn.Linear(H, 1),
 torch.nn.Sigmoid())
lossfn = torch.nn.BCELoss()

A gradient step:

ypred = model(x)
loss = lossfn(ypred, y)
model.zero_grad()
loss.backward()
with torch.no_grad():
 for param in model.parameters():
 param -= eta * param.grad