1. Regression with one predictor variable

(a) Suppose we predict a value \(v \). Then the MSE is \(M = \sum_{i=1}^{4} (y^{(i)} - v)^2 \). Taking the derivative with respect to \(v \):

\[
\frac{dM}{dv} = 2 \sum_{i=1}^{4} (y^{(i)} - v) \cdot (-1)
\]

This derivative is 0 when \(v = (1/4) \sum_{i=1}^{4} y^{(i)} \); the double derivative is also positive at this \(v \). Therefore, the MSE is minimized at the mean of the \(y^{(i)} \)'s – namely, at \(v = (1/4) \sum_{i=1}^{4} y^{(i)} = (1 + 3 + 4 + 6)/4 = 3.5 \). The MSE of this prediction is exactly the variance of the \(y \)-values, namely:

\[
MSE = \frac{(1 - 3.5)^2 + (3 - 3.5)^2 + (4 - 3.5)^2 + (6 - 3.5)^2}{4} = 3.25.
\]

(b) If we simply predict \(x \), the MSE is

\[
\frac{1}{4} \sum_{i=1}^{4} (y^{(i)} - x^{(i)})^2 = \frac{1}{4} ((1 - 1)^2 + (1 - 3)^2 + (4 - 4)^2 + (4 - 6)^2) = 2.
\]

(c) We saw in class that the MSE is minimized by choosing

\[
a = \frac{\sum_{i=1}^{n} (y^{(i)} - \bar{y})(x^{(i)} - \bar{x})}{\sum_{i=1}^{n} (x^{(i)} - \bar{x})^2}
\]

\[
b = \bar{y} - a \bar{x}
\]

where \(\bar{x} \) and \(\bar{y} \) are the mean values of \(x \) and \(y \), respectively. This works out to \(a = 1, b = 1; \) and thus the prediction on \(x \) is simply \(x + 1 \). The MSE of this predictor is:

\[
\frac{1}{4} (1^2 + 1^2 + 1^2 + 1^2) = 1.
\]

2. Lines through the origin

(a) The loss function is

\[
L(a) = \sum_{i=1}^{n} (y^{(i)} - ax^{(i)})^2
\]

(b) The derivative of this function is:

\[
\frac{dL}{da} = -2 \sum_{i=1}^{n} (y^{(i)} - ax^{(i)})x^{(i)}.
\]

Setting this to zero yields

\[
a = \frac{\sum_{i=1}^{n} x^{(i)}y^{(i)}}{\sum_{i=1}^{n} x^{(i)}x^{(i)}}.
\]
3. (a) Suppose the best predictor is $\sum_{i=1}^{5} a_i x_i + b$. Then the expected MSE is:

$$M = \mathbb{E}[(\sum_{i=1}^{5} a_i x_i + b - \sum_{i=1}^{10} x_i)^2]$$

Taking the partial derivative with respect to each a_i and b and setting them to zero, we get:

$$\frac{\partial M}{\partial a_i} = \mathbb{E}[(\sum_{j=1}^{5} a_j x_j + b - \sum_{j=1}^{10} x_j) \cdot x_i] = 0, i = 1, \ldots, 5 \quad (1)$$

$$\frac{\partial M}{\partial b} = \mathbb{E}[(\sum_{i=1}^{5} a_i x_i + b - \sum_{i=1}^{10} x_i) \cdot 1] = 0 \quad (2)$$

Simplifying equation 2, we get that:

$$\sum_{i=1}^{5} a_i \mathbb{E}[x_i] + b = \sum_{i=1}^{10} \mathbb{E}[x_i] \quad (3)$$

Plugging in the means $\mathbb{E}[x_i] = 1$ this gives

$$\sum_{i=1}^{5} a_i + b = 10 \quad (4)$$

Simplifying equation 1, we get that:

$$\sum_{j=1}^{5} a_i \mathbb{E}[x_i x_j] + b \mathbb{E}[x_i] = \sum_{j=1}^{10} \mathbb{E}[x_j x_i] \quad (5)$$

Since each x_i is independent of x_j for $i \neq j$, $\mathbb{E}[x_i x_j] = \mathbb{E}[x_i] \mathbb{E}[x_j] = 1$ for $i \neq j$ and $\mathbb{E}[x_i^2] = \mathbb{E}[(x_i - \mathbb{E}[x_i])^2] + \mathbb{E}[x_i]^2 = 2$. Plugging this in, we get:

$$a_i + b + \sum_{i=1}^{5} a_i = 11 \quad (6)$$

Subtracting (6) - (4), we get $a_i = 1$; plugging this into (4) gives $b = 5$. The best predictor is thus $\hat{y} = x_1 + x_2 + x_3 + x_4 + x_5 + 5$: to minimize the fluctuations due to $x_6 + \cdots + x_{10}$, we use its mean.

(b) The MSE is:

$$\mathbb{E}[(5 - x_6 - x_7 - \ldots - x_{10})^2] = \mathbb{E}[(1 - x_6) + (1 - x_7) + \ldots + (1 - x_{10}))^2]$$

Since the x_i’s are independent, this is equal to

$$\sum_{i=6}^{10} \mathbb{E}[(1 - x_i)^2] = \sum_{i=6}^{10} \mathbb{E}[(x_i - \mathbb{E}[x_i])^2] = 5$$

4. The loss induced by a linear predictor $w \cdot x + b$ is

$$L(w, b) = \sum_{i=1}^{n} |y^{(i)} - (w \cdot x^{(i)} + b)|.$$
5. Define

\[X = \begin{bmatrix} \leftarrow x^{(1)} \rightarrow \\
\leftarrow x^{(2)} \rightarrow \\
\vdots \\
\leftarrow x^{(n)} \rightarrow \end{bmatrix} \]

\[XX^T = \begin{bmatrix} x^{(1)} \cdot x^{(1)} & x^{(1)} \cdot x^{(2)} & \cdots & x^{(1)} \cdot x^{(n)} \\
 x^{(2)} \cdot x^{(1)} & x^{(2)} \cdot x^{(2)} & \cdots & x^{(2)} \cdot x^{(n)} \\
x^{(n)} \cdot x^{(1)} & x^{(n)} \cdot x^{(2)} & \cdots & x^{(n)} \cdot x^{(n)} \end{bmatrix} \]

6. With vocabulary \(V = \{ is, flower, rose, a, an \} \), the bag-of-words representation of the sentence “a rose is a rose” is \((2, 0, 3, 3, 0)\).

7. We want to find the \(z \in \mathbb{R}^d \) that minimizes

\[L(z) = \sum_{i=1}^{n} \|x^{(i)} - z\|^2 = \sum_{i=1}^{n} \sum_{j=1}^{d} (x^{(i)}_j - z_j)^2. \]

Taking partial derivatives, we have

\[\frac{\partial L}{\partial z_j} = \sum_{i=1}^{n} -2(x^{(i)}_j - z_j) = 2nz_j - 2 \sum_{i=1}^{n} x^{(i)}_j. \]

Thus

\[\nabla L(z) = 2nz - 2 \sum_{i=1}^{n} x^{(i)}. \]

Setting \(\nabla L(z) = 0 \) and solving for \(z \), gives us

\[z^* = \frac{1}{n} \sum_{i=1}^{n} x^{(i)}. \]

8. \(L(w) = w_1^2 + 2w_2^2 + w_3^2 - 2w_3w_4 + w_4^2 + 2w_1 - 4w_2 + 4 \)

(a) The derivative is

\[\nabla L(w) = (2w_1 + 2, 4w_2 - 4, 2w_3 - 2w_4, -2w_3 + 2w_4) \]

(b) The derivative at \(w = (0, 0, 0, 0) \) is \((2, -4, 0, 0)\). Thus the update at this point is:

\[w_{\text{new}} = w - \eta \nabla L(w) = (0, 0, 0, 0) - \eta(2, -4, 0, 0) = (-2\eta, 4\eta, 0, 0). \]

(c) To find the minimum value of \(L(w) \), we will equate \(\nabla L(w) \) to zero:

- \(2w_1 + 2 = 0 \implies w_1 = -1 \)
- \(4w_2 - 4 = 0 \implies w_2 = 1 \)
- \(2w_3 - 2w_4 = 0 \implies w_3 = w_4 \)

The function is minimized at any point of the form \((-1, 1, x, x)\).

(d) No, there is not a unique solution.

9. We are interested in analyzing

\[L(w) = \sum_{i=1}^{n} (y^{(i)} - w \cdot x^{(i)})^2 + \lambda \|w\|^2. \]
(a) To compute $\nabla L(w)$, we compute partial derivatives.

$$
\frac{\partial L}{\partial w_j} = \left(\sum_{i=1}^{n} -2x_j^{(i)}(y^{(i)} - w \cdot x^{(i)}) \right) + 2\lambda w_j
$$

Thus

$$\nabla L(w) = -2 \sum_{i=1}^{n} (y^{(i)} - w \cdot x^{(i)}) x^{(i)} + 2\lambda w.$$

(b) The update for gradient descent with step size η looks like

$$w_{t+1} = w_t - \eta \nabla L(w_t)$$

$$= w_t(1 - 2\eta\lambda) + 2\eta \sum_{i=1}^{n} (y^{(i)} - w_t \cdot x^{(i)}) x^{(i)}$$

(c) The update for stochastic gradient descent looks like the following.

$$w_{t+1} = w_t(1 - 2\eta\lambda) + 2\eta (y^{(i_t)} - w_t \cdot x^{(i_t)}) x^{(i_t)}$$

where i_t is the index chosen at time t.