1. **Risk of a random classifier.**

 (a) No matter what the correct label is for an input, the probability that a random classifier selects it is 0.25. Therefore, this classifier has risk (or, error probability) 0.75.

 (b) If we pick a classifier that always returns label i, then it is correct when the input’s label is i, and incorrect otherwise. So the most accurate classifier of this type should return the label for which the inputs have the highest frequency, which is A. The risk of this classifier is the probability that the label is something else, namely 0.5.

2. **Discrete and continuous distributions.**

 (a) Another example of a discrete distribution with infinite support is the geometric distribution. The simplest case of this has possible outcomes 0, 1, 2, ..., where the probability of outcome i is $1/(2^{i+1})$.

 (b) If X follows a uniform distribution over $[a, b]$ (where $a < b$), the probability that X takes on any specific value is 0.

3. **Properties of metrics.** Recall that d is a distance metric if and only if it satisfies the following properties:

 (P1) $d(x, y) \geq 0$
 (P2) $d(x, y) = 0 \iff x = y$
 (P3) $d(x, y) = d(y, x)$ (symmetry)
 (P4) $d(x, z) \leq d(x, y) + d(y, z)$ (triangle inequality)

 (a) If d_1 and d_2 are metrics, then so is $g(x, y) = d_1(x, y) + d_2(x, y)$. To show this, we will now verify the four properties directly.

 (P1) $g(x, y) \geq 0$ because it is the sum of two nonnegative values.
 (P2) Pick any x, y.

 $g(x, y) = 0 \iff d_1(x, y) + d_2(x, y) = 0$
 $\iff d_1(x, y) = 0$ and $d_2(x, y) = 0$ (since both nonnegative)
 $\iff x = y$

 (P3) $g(x, y) = d_1(x, y) + d_2(x, y) = d_1(y, x) + d_2(y, x) = g(y, x)$.
 (P4) For any x, y, z,

 $g(x, z) = d_1(x, z) + d_2(x, z)$
 $\leq (d_1(x, y) + d_1(y, z)) + (d_2(x, y) + d_2(y, z))$
 $= (d_1(x, y) + d_2(x, y)) + (d_1(y, z) + d_2(y, z))$
 $= g(x, y) + g(y, z)$

 (b) Hamming distance is a metric. We show why below by proving all four properties.

 (P1) $d(x, y) \geq 0$ because number of positions at which two strings differ can’t be negative.
 (P2) $d(x, x) = 0$ because a string differs from itself at no positions. Also, if $x \neq y$, there will be at least one position where x and y differ and hence $d(x, y) \geq 0$.
 (P3) $d(x, y) = d(y, x)$ because x differs from y at exactly the same positions where y differs from x.

1
(P4) Pick any $x, y, z \in \Sigma^m$. Let A denote the positions at which x, y differ: $A = \{ i : x_i \neq y_i \}$, so that $d(x, y) = |A|$. Likewise, let B be the positions at which y, z differ and let C be the positions at which x, z differ. Now, if $x_i = y_i$ and $y_i = z_i$, then $x_i = z_i$. Thus $C \subseteq A \cup B$, whereupon $d(x, z) = |C| \leq |A| + |B| = d(x, y) + d(y, z)$.

(c) Squared Euclidean distance is not a metric as it does not satisfy the triangle inequality. Consider the following three points in \mathbb{R}: $x = 1, y = 4, z = 5$.

\[
\begin{align*}
 d(x, z) &= (1 - 5)^2 = 16 \\
 d(x, y) &= (1 - 4)^2 = 9 \\
 d(y, z) &= (4 - 5)^2 = 11
\end{align*}
\]

Here $d(x, z) > d(x, y) + d(y, z)$.

4. A joint distribution over data and labels.

(a) Graph with regions where (x_1, x_2) might fall.

(b) Let μ_1 and μ_2 denote the density function of X_1 and X_2 respectively, and let μ denote the joint density of (X_1, X_2). Then,

\[
\mu(X_1, X_2) = \Pr(Y = 0)\mu(X_1, X_2|Y = 0) + \Pr(Y = 1)\mu(X_1, X_2|Y = 1)
\]

where $\mu(X_1, X_2|Y = i)$ is the conditional density of (X_1, X_2) given that the label is i. For $Y = 0$, this conditional density is uniform on the square $[-2, -1] \times [-2, -1]$ and for $Y = 1$, this is uniform on $[1, 3] \times [2, 4]$. Additonally, $\Pr(Y = 0) = \Pr(Y = 1) = 1/2$. Plugging this in, we get:

\[
\mu(x_1, x_2) = \begin{cases}
1/2 & (x_1, x_2) \in [-2, -1] \times [-2, -1] \\
(1/2) \cdot (1/4) = 1/8 & (x_1, x_2) \in [1, 3] \times [2, 4] \\
0 & \text{otherwise}
\end{cases}
\]

Observe that this density integrates to 1. Now we can calculate $\mu_1(X_1)$ as:

\[
\mu_1(x_1) = \int_{x_2 = -\infty}^{\infty} \mu(x_1, x_2) dx_2
\]

μ_2 can be calculated similarly. The answers are given below.
5. Two ways of specifying a joint distribution over data and labels. We can calculate the marginal distribution \(\mu \) over \(X \) using the following relationship:

\[
\mu(X_1, X_2) = \Pr(Y = 0)\mu(X_1, X_2|Y = 0) + \Pr(Y = 1)\mu(X_1, X_2|Y = 1)
\]

Here, \(\Pr(Y = 1) = \frac{1}{4} \) and \(\Pr(Y = 0) = \frac{3}{4} \), \(\mu(X_1, X_2|Y = 0) = 1/3 \) over \([0, 3] \times [0, 1]\) and \(\mu(X_1, X_2|Y = 1) = 1/2 \) over \([-1, 1] \times [0, 1]\). Putting these all together, we can calculate the marginal distribution of \(x = (x_1, x_2) \) as follows:

\[
\mu(x_1, x_2) = \begin{cases}
1/8 & \text{if } -1 \leq x_1 < 0 \\
3/8 & \text{if } 0 \leq x_1 < 1 \\
1/4 & \text{if } 1 \leq x_1 \leq 3 \\
\end{cases}
\]

To calculate the conditional distribution of \(y \) given \(x \), we first calculate the joint distribution of \((x = (x_1, x_2), y) \). This is calculated as \(\mu(X_1, X_2, Y) = \Pr(Y = y)\mu(X_1, X_2|Y = y) \) for \(y = 0, 1 \). Plugging in this expression, we get:

\[
\mu(x_1, x_2, y) = \begin{cases}
1/4 & (x_1, x_2) \in [0, 3] \times [0, 1], y = 0 \\
1/8 & (x_1, x_2) \in [-1, 1] \times [0, 1], y = 1 \\
0 & \text{otherwise} \\
\end{cases}
\]

We can now calculate the conditional distribution of \(x \) given \(y = 1 \) as \(\eta(x) = \mu(x_1, x_2, 1)/\mu(x_1, x_2) \).

Putting The conditional distribution of \(y \) given \(x = (x_1, x_2) \) is

\[
\eta(x) = \Pr(Y = 1|X = (x_1, x_2)) = \begin{cases}
1 & \text{if } -1 \leq x_1 < 0 \\
1/3 & \text{if } 0 \leq x_1 < 1 \\
0 & \text{if } 1 \leq x_1 \leq 3 \\
\end{cases}
\]

(a) Recall that for a specific \(x \), the Bayes-optimal classifier predicts the label \(y \) that maximizes \(\Pr(Y = y|X = x) \) – since this will have the highest accuracy. Here, the Bayes-optimal classifier predicts 1 when \(-0.5 \leq x \leq 0.5\), and 0 elsewhere. Its risk (probability of being wrong) is:

\[
R^* = \int_{-1}^{1} \min(\eta(x), 1 - \eta(x)) \mu(x) \, dx = \int_{-1}^{0.5} 0.2|x| \, dx + \int_{0.5}^{1} 0.4|x| \, dx = 0.275.
\]

(b) The 1-NN classifier based on the four given points predicts as follows:

\[
h(x) = \begin{cases}
1 & \text{if } -0.6 \leq x \leq 0.5 \\
0 & \text{if } x < -0.6 \text{ or } x > 0.5 \\
\end{cases}
\]
Notice that this differs slightly from the Bayes optimal classifier. The risk of rule h is

$$
R(h) = \int_{-1}^{1} \Pr(y \neq h(x) \mid x) \mu(x) \, dx
= \int_{-1}^{-0.6} 0.2|x| \, dx + \int_{-0.6}^{0.5} 0.8|x| \, dx + \int_{0.5}^{0.8} 0.2|x| \, dx + \int_{0.8}^{1} 0.4|x| \, dx = 0.308.
$$

(c) The classifier with smallest cost-sensitive risk is:

$$
h^*(x) = \begin{cases} 1 & \text{if } c_{01}(1 - \eta(x)) \leq c_{10}\eta(x) \\ 0 & \text{if } c_{01}(1 - \eta(x)) > c_{10}\eta(x) \end{cases}
$$

Observe that for the distribution described in the beginning of the problem, for all x, $c_{01}(1 - \eta(x)) > c_{10}\eta(x)$ – hence it is always best to predict 0.

7. Error rate of 1-NN classifier.

(a) Consider a training set in which the same point x appears twice, but with different labels. The training error of 1-NN on this data will not be zero. So 1-NN will have non-zero training error for any three points where two points have this property.

(b) We mentioned in class that the risk of the 1-NN classifier, $R(h_n)$, approaches $2R^*(1 - R^*)$ as $n \to \infty$ where R^* is the Bayes risk. If $R^* = 0$, this means that the 1-NN classifier is consistent: $R(h_n) \to 0$.

8. Bayes optimality in a multi-class setting. Recall that the Bayes optimal classifier is the one that maximizes accuracy for each x. If we predict label i for x, then the accuracy is $\eta_i(x)$; this suggests that the Bayes optimal should predict the label that maximizes $\eta_i(x)$. Specifically, it predicts the label that is most likely:

$$
h^*(x) = \arg \max_{i \in |Y|} \eta_i(x)
$$

9. Classification with an abstain option. For a given x, the expected cost incurred by a classifier is θ if it abstains, $\eta(x)$ if it predicts 0 and $1 - \eta(x)$ if it predicts 1. The optimal cost classifier should choose the option which has the minimum cost of the three options (predicting 0, 1 and abstaining) for each x; this happens when it abstains whenever the probability of error exceeds θ. Putting things together, this classifier turns out to be:

$$
h^*(x) = \begin{cases} \text{abstain} & \text{if } \theta < \eta(x) < 1 - \theta \\ 1 & \text{if } \eta(x) \geq 1 - \theta \\ 0 & \text{if } \eta(x) \leq \theta \end{cases}
$$

10. The statistical learning assumption.

(a) Here, μ is the distribution over proposed songs, while η tells us which songs will be successful. Both are likely to change with time, violating the statistical learning assumption. However, the drift might be quite slow, so a classifier trained today may work well for another year or two before needing to be re-trained.

(b) In this example, the bank’s data set consists only of loans it accepted. It is not a random sample from μ, which is the distribution over all loan applications. This is a severe violation of the i.i.d. sampling requirement.

(c) The move from the west coast to the entire country means that μ is changing, and it is possible that η is changing as well. Technically, this violates the statistical learning assumption; but it is possible that the change in distribution may not be very severe.
11. (a) C_1 is generally not equal to C_2 in this case. For a brief counterexample, suppose S has two points
$(3,3)$ with label 0 and $(5,0)$ with label 1. Pick a test point $x = (0,0)$.
$C_1(x) = 1$ as $\|x - (3,3)\|_1 = 6 > \|x - (5,0)\|_1 = 5$. But $C_2(x) = 0$ as
$\|x - (3,3)\|_2 = 3\sqrt{2} = 4.2 < \|x - (5,0)\|_2 = 5$.

(b) Here, C_1 is equal to C_2. Pick any point x; the closest neighbor of x within the training set S in L_2-distance is going to be the closest neighbor of x within S in the square of the L_2-distance. This means that both C_1 and C_2 will output the same label for x. Since this holds for any test point x, C_1 and C_2 are equal.