1. Let $\mathcal{X} = \{0, 1\}^d$. The class \mathcal{H} of monotone disjunctions consists of classifiers h that are given by a disjunction (logical OR) of some subset of the d features. For instance, the classifier
\[h(x) = x_1 \lor x_3 \lor x_8 \]
assigns label 1 to points $x \in \mathcal{X}$ for which any of the features x_1, x_3, x_8 are set; and assigns label 0 otherwise. Suppose we obtain a training set of n points, drawn i.i.d. from an unknown underlying distribution, and we find a monotone disjunction $h \in \mathcal{H}$ that is correct on all n points. We would like to give a bound on the true error of h.

(a) What is $|\mathcal{H}|$? Your answer should be a function of d.

(b) Give a bound on the true error of h that holds with probability at least $1 - \delta$ over the choice of training data.

(c) What bound could you give if instead we looked at the smaller class $\mathcal{H}_k \subset \mathcal{H}$ of k-sparse monotone disjunctions: that is, monotone disjunctions consisting of at least 1 and at most k variables?

2. Determine the VC dimension of the following concept classes. Justify your answers.

(a) Intervals on the line. $\mathcal{X} = \mathbb{R}$ and $\mathcal{H} = \{h_{a,b} : a, b \in \mathbb{R}, a < b\}$ where $h_{a,b}(x) = 1(a \leq x \leq b)$.

(b) Axis-aligned rectangles in the plane. Each $h \in \mathcal{H}$ is given by an axis-aligned rectangle in \mathbb{R}^2, where points inside the rectangle are labeled 1, and points outside are labeled 0.

3. Let $\mathcal{X} = \mathbb{R}^2$, and let \mathcal{H} be the hypothesis class of all convex sets on the plane. In other words, each $h_K \in \mathcal{H}$ corresponds to a convex set K, such that $h_K(x) = 1$ if x is inside or on the boundary of K and 0 otherwise. Show that \mathcal{H} has infinite VC dimension.

4. Let C_1 be a concept class with VC dimension d_1 and C_2 be a concept class with VC dimension d_2. Let C be the concept class of unions of C_1 and C_2 – that is, each concept $c \in C$ corresponds to a concept $c_1 \in C_1$ and a $c_2 \in C_2$ such that:
\[c(x) = 1, \quad \text{iff } c_1(x) = 1 \text{or } c_2(x) = 1 \]
Show an example of concept classes C, C_1 and C_2 such that the VC dimension of C is greater than $\max(d_1, d_2)$.

5. Suppose f is a single-hidden-layer neural network with d inputs, k hidden units and a single output unit. That is,
\[f(x) = \sum_{i=1}^{k} c_i \sigma(a_i^\top x + b_i) + e \]
where e, c_is and b_is are scalars, and each a_i is a $d \times 1$ vector. The non-linearity in the hidden units is a relu function – that is:
\[\sigma(u) = \begin{cases} u, & \text{if } u \geq 0 \\ 0, & \text{otherwise} \end{cases} \]
(a) Show that any linear function \(y = a^\top x + b \) of \(x \) can be represented by such an \(f \).

(b) Suppose \(k = 2 \). A truncated linear function is a function of the form \(g(x) = \max(a, b + c^\top x) \) — that is, a combination of a constant and a linear function. Give an example of a function that \(f \) can represent and that is not a truncated linear function.

6. Let \(\mathcal{F} \) be the class of all one-hidden-layer relu networks on \(d \) inputs and a single output. Is \(\mathcal{F} \) closed under translation — that is, for all \(f \in \mathcal{F} \) and all scalars \(b \), is \(f(x) + b \in \mathcal{F} \)? What about scaling — if \(f(x) \in \mathcal{F} \), is \(f(Dx) \in \mathcal{F} \) as well for any diagonal matrix \(D \)? Justify your answer.