
CSE 251A: Machine learning Winter 2021

Homework 3 — Convexity, Perceptron, SVM

1. Are the following functions f : R→ R convex, concave, or neither? Justify your answer.

(a) f(x) = eax, for some constant a.

(b) f(x) = |x|.
(c) f(x) = lnx, where x > 0.

(d) f(x) = xa, for x ≥ 0 and a ≥ 1. What if a ≤ 0? What if 0 ≤ a ≤ 1?

2. Show that the following functions f : Rd → R are convex.

(a) f(x) = xTMx, where M ∈ Rd×d is symmetric positive semidefinite.

(b) f(x) = eu
>x, for some u ∈ Rd.

(c) f(x) = max(f1(x), . . . , fk(x)), where f1, . . . , fk are convex.

3. Recall that the entropy of a discrete distribution p = (p1, . . . , pk) over k outcomes is defined as follows:

H(p) =

n∑
i=1

pi log
1

pi
.

Show that H(p) is a concave function of p. You may switch to the natural logarithm if you wish.

4. Recall the loss function for regularized least squares: for some constant λ > 0,

L(w) =

n∑
i=1

(y(i) − w · x(i))2 + λ‖w‖2,

(a) Obtain an expression for the Hessian H(w): that is, the d× d matrix of second derivatives.

(b) Establish that L(w) is a convex function of w.

5. In class, we studied convex functions. In this problem, we will define the notion of a convex set. Pick
any K ⊆ Rd. We say K is a convex set if for any x, y ∈ K, the line segment joining x and y lies entirely
in K; more formally, for any x, y ∈ K and any 0 < θ < 1, we have θx+ (1− θ)y ∈ K.

Which of the following is a convex set?

(a) The circle: {(x, y) ∈ R2 : x2 + y2 = 1}.
(b) The unit ball: {x ∈ Rd : ‖x‖ ≤ 1}.
(c) A hyperplane: {x ∈ Rd : w · x = 0} for some w ∈ Rd.

(d) All k-sparse points: {x ∈ Rd : x has at most k nonzero coordinates}.
(e) The set of all d × d symmetric positive semidefinite matrices (treat each matrix as a vector in

Rd(d+1)/2).
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6. Norms. In class, we talked about `p norms on Rd, which include the following:

• The l1 norm: ‖x‖1 =
∑d

i=1 |xi|.

• The l2 (Euclidean) norm: ‖x‖ =
√∑d

i=1 x
2
i .

• The l∞ norm: ‖x‖∞ = maxi |xi|.

We now define norms more generally. A function f : Rd → R is a norm if:

• It is nonnegative: f(x) ≥ 0 always.

• f(x) = 0 if and only if x = 0.

• It is homogeneous: f(tx) = |t|f(x) for any x ∈ Rd and t ∈ R.

• It satisfies the triangle inequality: f(x+ y) ≤ f(x) + f(y).

(a) Prove that the `1 norm satisfies these properties.

(b) Prove that any norm f : Rd → R is a convex function. (This means we can easily incorporate
norms into objective functions we are optimizing.)

(c) Prove the following two properties. For the second, you may need to use the Cauchy-Schwarz
inequality (that is, |a · b| ≤ ‖a‖‖b‖ for any vectors a, b).

• ‖x‖1 ≥ ‖x‖ ≥ ‖x‖∞.

• ‖x‖1 ≤ ‖x‖ ·
√
d ≤ ‖x‖∞ · d.

(d) Another norm that is quite common in machine learning and statistics is the Mahalanobis norm:

‖x‖A =
√
xTAx,

where A is a symmetric positive definite matrix. What does the unit ball of this norm, that is
{x : ‖x‖A ≤ 1}, look like? Hint: think back to the multivariate Gaussian.

7. A lower bound for the perceptron. Give an example of a data set {(x(i), y(i))} for which the bound of
the perceptron convergence theorem is tight. For convenience, choose the x(i) to have unit length, and
show that the number of updates is 1/γ2.

8. Support vectors. The picture below shows the decision boundary obtained upon running soft-margin
SVM on a small data set of blue squares and red circles; the dashed lines correspond to the lines
w>x+ b = 1 and w>x+ b = −1 respectively.
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(a) Mark the support vectors. For each, indicate the approximate value of the corresponding slack
variable.

(b) Suppose the factor C in the soft-margin SVM optimization problem were increased. Would you
expect the margin to increase or decrease?

9. Consider the following optimization problem:

min x+ 5y

subject to: xy = 4

x ≥ 0, y ≥ 0

(a) First, solve the optimization problem by using the substitution method (eg, by substituting y =
4/x in the equality constraint.) What is the optimal value of the objective function?

(b) Write down the Lagrangean for the optimization problem. Write down all the KKT conditions.
Use the KKT conditions and the optimal solution to solve for the values of the Lagrangean
multipliers. Where needed, justify your answer.

10. A halfspace in Rd is specified by a vector w ∈ Rd and an offset b ∈ R, and is defined as {x : w · x ≤ b}.

(a) Now suppose we have a collection of halfspaces, given by w1, w2, . . . and b1, b2, . . ., respectively.
There might be infinitely many of them. Show that their intersection is a convex set.

(b) Can you express the unit ball {x ∈ Rd : ‖x‖2 ≤ 1} as the intersection of infinitely many halfspaces?

11. We are given two polyhedra P1, P2 ⊆ Rd, each specified as the intersection of finitely many halfspaces.
We would like to find the distance between these two bodies: the smallest possible value ‖x1 − x2‖,
where x1 ∈ P1 and x2 ∈ P2. Show how to express this as a convex program.
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