In ML we often look at functions of vectors \(\omega \in \mathbb{R}^d \).

Examples:

1. \(f(\omega) = \omega^T a + b \)
 - \(a \) is a \(d \times 1 \) vector, \(b \) is a scalar

2. \(f(\omega) = \frac{1}{2} \| \omega \|^2 \)
 - \(\omega \) is a \(d \times 1 \) vector

What do these functions look like?

1. \(f(\omega) = \omega^T a + b \)
 - Linear function
 - In 1d, slope = \(a \)
 - Intercept = \(b \)

2. \(f(\omega) = \frac{1}{2} \| \omega \|^2 \)
 - In 1d: parabola
 - In higher dimensions, paraboloid

Gradients: Derivative for multivariable functions.

\[f: \mathbb{R}^d \rightarrow \mathbb{R} \quad \text{(f is a function of d variables)} \]

\[\nabla f(\omega) = \begin{bmatrix} \frac{\partial f}{\partial \omega_1} \\ \vdots \\ \frac{\partial f}{\partial \omega_d} \end{bmatrix} \]

Gradient of \(f \) is a \(d \times 1 \) vector, whose coordinate \(i \) is the partial derivative with respect to \(\omega_i \)

Examples:

1. \(f(\omega) = \omega^T a + b = \sum_{i=1}^{d} a_i \omega_i + b \)
 - For each \(i \), \(\frac{\partial f}{\partial \omega_i} = a_i \)

So \[\nabla f(\omega) = \begin{bmatrix} a_1 \\ \vdots \\ a_d \end{bmatrix} = a \]
2. \[f(\omega) = \frac{1}{2} \| \omega \|_2^2 = \frac{1}{2} \sum_{i=1}^{d} \omega_i^2 \]

\[\frac{\partial f}{\partial \omega_i} = \frac{1}{2} 2 \omega_i = \omega_i, \text{ so } \nabla f(\omega) = \omega. \]

Gradient represents the direction along which the function increases the fastest.

Why is this useful? If we want to minimize a function from a starting point, we can follow the direction opposite to the gradient. This is called gradient descent. This continues until we get close to the minimum point where \(\nabla f = 0 \).