CSE 151: Introduction to Machine Learning

Winter 2017
Problem Set 6
Instructor: Kamalika Chaudhuri
Due on: Mar 17, 2017

Problem 1: 6 points

In class, we saw that if we have two labels, then the error of a classifier which guesses completely randomly is 0.5 . In this problem, we look at what happens when there are $k>2$ labels.

1. Random guesser Geser knows that there are k labels, and for each example, selects a label out of $\{1, \ldots, k\}$ uniformly at random. What is the error of Geser ?
2. Now suppose we have a more sophisticated random guesser Zavulon who knows that w_{1} fraction of the data distribution has label $1, w_{2}$ fraction has label 2, and so on. For each example, Zavulon also selects a label out of $\{1, \ldots, k\}$ at random, but he selects label 1 with probability w_{1}, label 2 with probability w_{2} and so on. What is the error of Zavulon?

Solution

1. Since Geser selects a label uniformly at random, for a sample x, the probability that the selected label is the correct one is $\frac{1}{k}$, and the probability that it is incorrect is $1-\frac{1}{k}$. Thus, Geser's error is $1-\frac{1}{k}$.
2. Zavulon's guessing process is equivalent to the following probabilistic process: first draw a sample x from the data distribution, and then draw a random variable Y, which is $1 \mathrm{w} . \mathrm{p} . w_{1}, 2 \mathrm{w} . \mathrm{p} . w_{2}$, and so on. Let E_{i} be the event that the true label of a selected sample is i; thus $\operatorname{Pr}\left(E_{i}\right)=w_{i}$. Thus Zavulon's error is:

$$
\sum_{i=1}^{k} \operatorname{Pr}\left(E_{i}\right) \operatorname{Pr}\left(Y \neq i \mid E_{i}\right)=\sum_{i=1}^{k} w_{i}\left(1-w_{i}\right)=1-\sum_{i=1}^{k} w_{i}^{2}
$$

Problem 2: 14 points

Consider the following two data distributions D_{1} and D_{2} over labeled examples. There is a single feature, denoted by X which takes values in the set $\{1,2,3,4\}$ and a binary label $Y \in\{0,1\}$. D_{1} is described as follows:

$$
\begin{aligned}
\operatorname{Pr}(X=i) & =\frac{1}{4}, \quad i \in\{1,2,3,4\} \\
\operatorname{Pr}(Y=1 \mid X=i) & =1, \quad i \in\{1,4\} \\
\operatorname{Pr}(Y=0 \mid X=i) & =1, \quad i \in\{2,3\}
\end{aligned}
$$

D_{2} is described as follows.

$$
\begin{aligned}
\operatorname{Pr}(X=i) & =\frac{1}{4}, \quad i \in\{1,2,3,4\} \\
\operatorname{Pr}(Y=1 \mid X=i) & =\frac{i}{10}, \quad i \in\{1,2,3,4\}
\end{aligned}
$$

1. Consider the following classifier $h: h(x)=1$ if $x>1.5$ and 0 otherwise. What is the true error of h when the true data distribution is D_{1} ?
2. Suppose our concept class C is the set of all classifiers of the form: $h_{t}(x)=1$ if $x>t$ and 0 otherwise. Write down a classifier in this concept class that minimizes the true error when the data distribution is D_{1}. What is the true error of this classifier? Do we have a non-zero bias when the concept class is C and the data distribution is D_{1} ?
3. Repeat parts (1) and (2) for the data distribution D_{2}.

Solution

1. According to the data distribution D_{1}, the true label $Y=1$ for $X=1$ and $X=4$ whereas $Y=0$ for $X=2$ and $X=3$. The classifier $h(x)$ predicts the label 0 for $x=1$ and label 1 otherwise. Therefore, $h(x)$ makes mistakes for $x \in\{1,2,3\}$. Hence, the true error of the classifier $h(x)$ is given as follows.

$$
\begin{aligned}
\text { True error }= & \sum_{i=1}^{4} \operatorname{Pr}(X=i) \operatorname{Pr}(h(i) \neq Y \mid X=i) \\
= & \operatorname{Pr}(X=1) \operatorname{Pr}(Y \neq 0 \mid X=1)+\operatorname{Pr}(X=2) \operatorname{Pr}(Y \neq 1 \mid X=2)+\operatorname{Pr}(X=3) \operatorname{Pr}(Y \neq 1 \mid X=3) \\
& +\operatorname{Pr}(X=4) \operatorname{Pr}(Y \neq 1 \mid X=4) \\
= & \operatorname{Pr}(X=1) \operatorname{Pr}(Y=1 \mid X=1)+\operatorname{Pr}(X=2) \operatorname{Pr}(Y=0 \mid X=2)+\operatorname{Pr}(X=3) \operatorname{Pr}(Y=0 \mid X=3) \\
& +\operatorname{Pr}(X=4) \operatorname{Pr}(Y=0 \mid X=4) \\
= & \frac{1}{4} \times 1+\frac{1}{4} \times 1+\frac{1}{4} \times 1+\frac{1}{4} \times 0 \\
= & \frac{3}{4}
\end{aligned}
$$

2. Since we know that the random variable X can only take integer values from 1 to 4 , we can easily come up with 5 classifiers that represent the entire concept class C such that one of the classifiers will classify all points as 1 , the second classifier would classify $x=1$ as 0 and all the rest as 1 , the third would classify $x=1$ and $x=2$ as 0 and all the rest as 1 , and so on. In order to do this, we vary t over the set $\{0,1,2,3,4\}$ and observe the true errors of each of these 5 classifiers. We calculate the true error for each of these classifiers in a way similar to Problem 2.1.

For $t=0, h_{0}(x)=1$ if $x>0$ and 0 otherwise.

$$
\text { True error } \begin{aligned}
\epsilon_{0}= & \operatorname{Pr}(X=1) \operatorname{Pr}(Y=0 \mid X=1)+\operatorname{Pr}(X=2) \operatorname{Pr}(Y=0 \mid X=2)+\operatorname{Pr}(X=3) \operatorname{Pr}(Y=0 \mid X=3) \\
& +\operatorname{Pr}(X=4) \operatorname{Pr}(Y=0 \mid X=4) \\
= & \frac{1}{4} \times 0+\frac{1}{4} \times 1+\frac{1}{4} \times 1+\frac{1}{4} \times 0 \\
= & \frac{1}{2}
\end{aligned}
$$

For $t=1, h_{1}(x)=1$ if $x>1$ and 0 otherwise.

$$
\text { True error } \begin{aligned}
\epsilon_{1}= & \operatorname{Pr}(X=1) \operatorname{Pr}(Y=1 \mid X=1)+\operatorname{Pr}(X=2) \operatorname{Pr}(Y=0 \mid X=2)+\operatorname{Pr}(X=3) \operatorname{Pr}(Y=0 \mid X=3) \\
& +\operatorname{Pr}(X=4) \operatorname{Pr}(Y=0 \mid X=4) \\
= & \frac{1}{4} \times 1+\frac{1}{4} \times 1+\frac{1}{4} \times 1+\frac{1}{4} \times 0 \\
= & \frac{3}{4}
\end{aligned}
$$

For $t=2, h_{2}(x)=1$ if $x>2$ and 0 otherwise.

$$
\text { True error } \begin{aligned}
\epsilon_{2}= & \operatorname{Pr}(X=1) \operatorname{Pr}(Y=1 \mid X=1)+\operatorname{Pr}(X=2) \operatorname{Pr}(Y=1 \mid X=2)+\operatorname{Pr}(X=3) \operatorname{Pr}(Y=0 \mid X=3) \\
& +\operatorname{Pr}(X=4) \operatorname{Pr}(Y=0 \mid X=4) \\
= & \frac{1}{4} \times 1+\frac{1}{4} \times 0+\frac{1}{4} \times 1+\frac{1}{4} \times 0 \\
= & \frac{1}{2}
\end{aligned}
$$

For $t=3, h_{3}(x)=1$ if $x>3$ and 0 otherwise.

$$
\text { True error } \begin{aligned}
\epsilon_{3}= & \operatorname{Pr}(X=1) \operatorname{Pr}(Y=1 \mid X=1)+\operatorname{Pr}(X=2) \operatorname{Pr}(Y=1 \mid X=2)+\operatorname{Pr}(X=3) \operatorname{Pr}(Y=1 \mid X=3) \\
& +\operatorname{Pr}(X=4) \operatorname{Pr}(Y=0 \mid X=4) \\
= & \frac{1}{4} \times 1+\frac{1}{4} \times 0+\frac{1}{4} \times 0+\frac{1}{4} \times 0 \\
= & \frac{1}{4}
\end{aligned}
$$

For $t=4, h_{4}(x)=1$ if $x>4$ and 0 otherwise.
True error $\epsilon_{4}=\operatorname{Pr}(X=1) \operatorname{Pr}(Y=1 \mid X=1)+\operatorname{Pr}(X=2) \operatorname{Pr}(Y=1 \mid X=2)+\operatorname{Pr}(X=3) \operatorname{Pr}(Y=1 \mid X=3)$

$$
+\operatorname{Pr}(X=4) \operatorname{Pr}(Y=1 \mid X=4)
$$

$$
=\frac{1}{4} \times 1+\frac{1}{4} \times 0+\frac{1}{4} \times 0+\frac{1}{4} \times 1
$$

$$
=\frac{1}{2}
$$

Since $t=3$ achieves the least true error, $h_{3}(x)$ is the classifier which minimizes the true error. The true error of this classifiers is $\frac{1}{4}$. Also, the bias of the concept class C is $\frac{1}{4}$ since this is the least error achieved by any classifier in C when the data distribution is D_{1}. Thus, we have a non-zero bias for the concept class C and the true distribution D_{1}.
3. (a) Similar to Problem 2.1, the true error of the classifier $h(x)$ when the data distribution is D_{2} is given as follows.

$$
\begin{aligned}
\text { True error }= & \sum_{i=1}^{4} \operatorname{Pr}(X=i) \operatorname{Pr}(h(i) \neq Y \mid X=i) \\
= & \operatorname{Pr}(X=1) \operatorname{Pr}(Y \neq 0 \mid X=1)+\operatorname{Pr}(X=2) \operatorname{Pr}(Y \neq 1 \mid X=2)+\operatorname{Pr}(X=3) \operatorname{Pr}(Y \neq 1 \mid X=3) \\
& +\operatorname{Pr}(X=4) \operatorname{Pr}(Y \neq 1 \mid X=4) \\
= & \operatorname{Pr}(X=1) \operatorname{Pr}(Y=1 \mid X=1)+\operatorname{Pr}(X=2) \operatorname{Pr}(Y=0 \mid X=2)+\operatorname{Pr}(X=3) \operatorname{Pr}(Y=0 \mid X=3) \\
& +\operatorname{Pr}(X=4) \operatorname{Pr}(Y=0 \mid X=4) \\
= & \frac{1}{4} \times \frac{1}{10}+\frac{1}{4}\left(1-\frac{2}{10}\right)+\frac{1}{4}\left(1-\frac{3}{10}\right)+\frac{1}{4}\left(1-\frac{4}{10}\right) \\
= & \frac{11}{20}
\end{aligned}
$$

(b) Similar to Problem 3.2, we vary t over the set $\{0,1,2,3,4\}$ and observe the true errors for these 5 classifiers.

For $t=0, h_{0}(x)=1$ if $x>0$ and 0 otherwise.
True error $\epsilon_{0}=\operatorname{Pr}(X=1) \operatorname{Pr}(Y=0 \mid X=1)+\operatorname{Pr}(X=2) \operatorname{Pr}(Y=0 \mid X=2)+\operatorname{Pr}(X=3) \operatorname{Pr}(Y=0 \mid X=3)$

$$
+\operatorname{Pr}(X=4) \operatorname{Pr}(Y=0 \mid X=4)
$$

$$
=\frac{1}{4}\left(1-\frac{1}{10}\right)+\frac{1}{4}\left(1-\frac{2}{10}\right)+\frac{1}{4}\left(1-\frac{3}{10}\right)+\frac{1}{4}\left(1-\frac{4}{10}\right)
$$

$$
=\frac{3}{4}
$$

For $t=1, h_{1}(x)=1$ if $x>1$ and 0 otherwise.
True error $\epsilon_{1}=\operatorname{Pr}(X=1) \operatorname{Pr}(Y=1 \mid X=1)+\operatorname{Pr}(X=2) \operatorname{Pr}(Y=0 \mid X=2)+\operatorname{Pr}(X=3) \operatorname{Pr}(Y=0 \mid X=3)$ $+\operatorname{Pr}(X=4) \operatorname{Pr}(Y=0 \mid X=4)$
$=\frac{1}{4} \times \frac{1}{10}+\frac{1}{4}\left(1-\frac{2}{10}\right)+\frac{1}{4}\left(1-\frac{3}{10}\right)+\frac{1}{4}\left(1-\frac{4}{10}\right)$

$$
=\frac{11}{20}
$$

For $t=2, h_{2}(x)=1$ if $x>2$ and 0 otherwise.
True error $\epsilon_{2}=\operatorname{Pr}(X=1) \operatorname{Pr}(Y=1 \mid X=1)+\operatorname{Pr}(X=2) \operatorname{Pr}(Y=1 \mid X=2)+\operatorname{Pr}(X=3) \operatorname{Pr}(Y=0 \mid X=3)$ $+\operatorname{Pr}(X=4) \operatorname{Pr}(Y=0 \mid X=4)$
$=\frac{1}{4} \times \frac{1}{10}+\frac{1}{4} \times \frac{2}{10}+\frac{1}{4}\left(1-\frac{3}{10}\right)+\frac{1}{4}\left(1-\frac{4}{10}\right)$

$$
=\frac{2}{5}
$$

For $t=3, h_{3}(x)=1$ if $x>3$ and 0 otherwise.
True error $\epsilon_{3}=\operatorname{Pr}(X=1) \operatorname{Pr}(Y=1 \mid X=1)+\operatorname{Pr}(X=2) \operatorname{Pr}(Y=1 \mid X=2)+\operatorname{Pr}(X=3) \operatorname{Pr}(Y=1 \mid X=3)$ $+\operatorname{Pr}(X=4) \operatorname{Pr}(Y=0 \mid X=4)$
$=\frac{1}{4} \times \frac{1}{10}+\frac{1}{4} \times \frac{2}{10}+\frac{1}{4} \times \frac{3}{10}+\frac{1}{4}\left(1-\frac{4}{10}\right)$
$=\frac{3}{10}$
For $t=4, h_{4}(x)=1$ if $x>4$ and 0 otherwise.

$$
\text { True error } \begin{aligned}
\epsilon_{4}= & \operatorname{Pr}(X=1) \operatorname{Pr}(Y=1 \mid X=1)+\operatorname{Pr}(X=2) \operatorname{Pr}(Y=1 \mid X=2)+\operatorname{Pr}(X=3) \operatorname{Pr}(Y=1 \mid X=3) \\
& +\operatorname{Pr}(X=4) \operatorname{Pr}(Y=1 \mid X=4) \\
= & \frac{1}{4} \times \frac{1}{10}+\frac{1}{4} \times \frac{2}{10}+\frac{1}{4} \times \frac{3}{10}+\frac{1}{4} \times \frac{4}{10} \\
= & \frac{1}{4}
\end{aligned}
$$

Since $t=4$ achieves the least true error, $h_{4}(x)$ is the classifier which minimizes the true error. The true error of this classifier is $\frac{1}{4}$. Also, the bias of the concept class C is $\frac{1}{4}$ since this is the least error achieved by any classifier in C when the data distribution is D_{2}. Thus, we have a non-zero bias for the concept class C and the true distribution D_{2}.

