Problem 1: 8 points

In the following problems, suppose that K, K_{1} and K_{2} are kernels with feature maps ϕ, ϕ^{1} and ϕ^{2}. For the following functions $K^{\prime}(x, z)$, state if they are kernels or not. If they are kernels, write down the corresponding feature map, in terms of ϕ, ϕ^{1}, ϕ^{2} and c, c_{1}, c_{2}. If they are not kernels, prove that they are not.

1. $K^{\prime}(x, z)=c K(x, z)$, for $c>0$.
2. $K^{\prime}(x, z)=c K(x, z)$, where $c<0$, and there exists some x for which $K(x, x)>0$.
3. $K^{\prime}(x, z)=c_{1} K_{1}(x, z)+c_{2} K_{2}(x, z)$ for $c_{1}, c_{2}>0$.
4. $K^{\prime}(x, z)=K_{1}(x, z) K_{2}(x, z)$.

Solution

1. Suppose $K(x, z)=\langle\phi(x), \phi(z)\rangle$ for some feature map ϕ, and let $\phi^{\prime}(x)=\sqrt{c} \phi(x)$. Then, for all x and z,

$$
K^{\prime}(x, z)=c K(x, z)=c\langle\phi(x), \phi(z)\rangle=\langle\sqrt{c} \phi(x), \sqrt{c} \phi(z)\rangle
$$

Therefore $K^{\prime}(x, z)$ is a kernel corresponding to the feature map ϕ^{\prime}.
2. Suppose x_{0} is the x for which $K(x, x)>0$. Consider the 1×1 kernel matrix $K^{\prime}=K^{\prime}\left(x_{0}, x_{0}\right)$ for the kernel K^{\prime} and the data point x_{0}. Then, $K^{\prime}=c K\left(x_{0}, x_{0}\right)$. If $z=1$, then $z^{\top} K^{\prime} z=c K\left(x_{0}, x_{0}\right)<0$, which violates the kernel Positive Semi Definiteness (PSD) property. Thus K^{\prime} is not a kernel.
3. Suppose $K_{1}(x, z)=\left\langle\phi^{1}(x), \phi^{1}(z)\right\rangle$ and $K_{2}(x, z)=\left\langle\phi^{2}(x), \phi^{2}(z)\right\rangle$. Then, for all x and z,

$$
\begin{aligned}
K^{\prime}(x, z) & =c_{1}\left\langle\phi^{1}(x), \phi^{1}(z)\right\rangle+c_{2}\left\langle\phi^{2}(x), \phi^{2}(z)\right\rangle=\left\langle\sqrt{c_{1}} \phi^{1}(x), \sqrt{c_{1}} \phi^{1}(z)\right\rangle+\left\langle\sqrt{c_{2}} \phi^{2}(x), \sqrt{c_{2}} \phi^{2}(z)\right\rangle \\
& =\left\langle\phi^{\prime}(x), \phi^{\prime}(z)\right\rangle
\end{aligned}
$$

where $\phi^{\prime}(x)$ is a concatenation of the feature maps $\sqrt{c_{1}} \phi^{1}(x)$ and $\sqrt{c_{2}} \phi^{2}(x)$. In other words, if the feature maps ϕ^{1} and ϕ^{2} have m_{1} and m_{2} coordinates respectively, then ϕ^{\prime} has $m_{1}+m_{2}$ coordinates; for any x, the first m_{1} coordinates of $\phi^{\prime}(x)$ are $\sqrt{c_{1}} \phi_{1}^{1}(x), \sqrt{c_{1}} \phi_{2}^{1}(x), \ldots, \sqrt{c_{1}} \phi_{m_{1}}^{1}(x)$ and the remaining m_{2} coordinates of $\phi^{\prime}(x)$ are $\sqrt{c_{2}} \phi_{1}^{2}(x), \sqrt{c_{2}} \phi_{2}^{2}(x), \ldots, \sqrt{c_{2}} \phi_{m_{2}}^{2}(x)$. Therefore $K^{\prime}(x, z)$ is a kernel corresponding to the feature map ϕ^{\prime}.
4. Suppose $K_{1}(x, z)=\left\langle\phi^{1}(x), \phi^{1}(z)\right\rangle$ and $K_{2}(x, z)=\left\langle\phi^{2}(x), \phi^{2}(z)\right\rangle$. If x and z are d-dimensional vectors, then, for all x and z,

$$
\begin{aligned}
K^{\prime}(x, z) & =K_{1}(x, z) K_{2}(x, z)=\left\langle\phi^{1}(x), \phi^{1}(z)\right\rangle \cdot\left\langle\phi^{2}(x), \phi^{2}(z)\right\rangle \\
& =\left(\sum_{i} \phi_{i}^{1}(x) \phi_{i}^{1}(z)\right) \cdot\left(\sum_{j} \phi_{j}^{2}(x) \phi_{j}^{2}(z)\right)=\sum_{i, j=1}^{d}\left(\phi_{i}^{1}(x) \phi_{j}^{2}(x)\right) \cdot\left(\phi_{i}^{1}(z) \phi_{j}^{2}(z)\right) \\
& =\left\langle\phi^{\prime}(x), \phi^{\prime}(z)\right\rangle
\end{aligned}
$$

where

$$
\phi^{\prime}(x)=\left[\begin{array}{c}
\phi_{1}^{1}(x) \phi_{1}^{2}(x) \tag{1}\\
\phi_{1}^{1}(x) \phi_{2}^{2}(x) \\
\phi_{2}^{1}(x) \phi_{1}^{2}(x) \\
\phi_{1}^{1}(x) \phi_{3}^{2}(x) \\
\phi_{2}^{1}(x) \phi_{2}^{2}(x) \\
\phi_{3}^{1}(x) \phi_{1}^{2}(x) \\
\vdots
\end{array}\right]
$$

That is, ϕ^{\prime} is a $d^{2} \times 1$ feature map, which has a coordinate $\phi_{(i, j)}(\cdot)$ corresponding to each pair (i, j), $1 \leq i, j \leq d$, where $\phi_{(i, j)}(x)=\phi_{i}^{1}(x) \phi_{j}^{2}(x)$. Thus $K^{\prime}(x, z)$ is a kernel corresponding to the feature map ϕ^{\prime}.

Problem 2: 14 points

For the following functions $K(x, z)$, state if it is a kernel or not. If the function is a kernel, then write down its feature map. If it is not a kernel, prove that it is not one.

1. $x=\left[x_{1}, x_{2}\right], z=\left[z_{1}, z_{2}\right], x_{1}, x_{2}, z_{1}, z_{2}$ are real numbers. $K(x, z)=x_{1} z_{2}$.
2. Let $x=\left[x_{1}, \ldots, x_{d}\right], z=\left[z_{1}, \ldots, z_{d}\right], x_{i}$ s and z_{i} s are real numbers. $K(x, z)=1-\langle x, z\rangle$.
3. $x=\left[x_{1}, \ldots, x_{d}\right], z=\left[z_{1}, \ldots, z_{d}\right]$, and f is a function. $K(x, z)=f\left(x_{1}, x_{2}\right) f\left(z_{1}, z_{2}\right)$.
4. $x=\left[x_{1}, \ldots, x_{d}\right], z=\left[z_{1}, \ldots, z_{d}\right], x_{i}$ s and z_{i} s are integers between 0 and 100. $K(x, z)=\sum_{i=1}^{d} \min \left(x_{i}, z_{i}\right)$.
5. $x=\left[x_{1}, \ldots, x_{d}\right], z=\left[z_{1}, \ldots, z_{d}\right], x_{i} \mathrm{~s}$ and $z_{i} \mathrm{~s}$ are real numbers.

$$
K(x, z)=\left(1+x_{1} z_{1}\right)\left(1+x_{2} z_{2}\right) \ldots\left(1+x_{d} z_{d}\right)
$$

6. $x=\left[x_{1}, \ldots, x_{d}\right], z=\left[z_{1}, \ldots, z_{d}\right], x_{i}$ s and z_{i} s are integers between 0 and 100. $K(x, z)=\sum_{i=1}^{d} \max \left(x_{i}, z_{i}\right)$.
7. x are z are documents with words from some dictionary $D . K(x, z)$ is the number of words that occur in both x and z, where each unique common word is counted once.

Solution

1. $K(x, z)$ is not a kernel.

For $x=[1,-1]$, we have $K(x, x)=1 \times-1=-1$. The corresponding kernel matrix $K=-1$. For $v=1$, $v^{\top} K v=-1<0$, which violates the PSD property. Thus K is not a kernel.
2. $K(x, z)$ is not a kernel.

For $x=[2,2, \cdots]$, we have $K(x, x)=1-\langle x, x\rangle=1-4 d$. The corresponding kernel matrix $K=1-4 d$. For $v=1, v^{\top} K v=1-4 d<0$, which violates the kernel PSD property for $d>0$. Thus K is not a kernel.
3. $K(x, z)$ is a kernel corresponding to the feature map $\phi(x)=f\left(x_{1}, x_{2}\right)$.
4. $K(x, z)$ is a kernel.

Let $K_{i}(x, z)=\min \left(x_{i}, z_{i}\right)$. From Problem 1, we know that the sum of two kernels K_{1} and K_{2} is also a kernel whose corresponding feature map is the concatenation of the feature maps corresponding to K_{1} and K_{2}. Thus if we can find the feature maps for all $K_{i}(x, z)$, then we can get the feature map for $K(x, z)$ by concatenating these maps. Consider following feature map:

$$
\begin{equation*}
\phi_{i}(x)=\left[f_{1}\left(x_{i}\right), f_{2}\left(x_{i}\right), \ldots, f_{100}\left(x_{i}\right)\right]^{\top} \tag{2}
\end{equation*}
$$

where $f_{k}(t)=I(t \geq k)=\left\{\begin{array}{ll}1 & t \geq k \\ 0 & t<k\end{array}\right.$. Without loss of generality, suppose that $x_{i} \leq z_{i}$. Then $\phi_{i}(x)=$ $[1, \ldots, 1,0, \ldots, 0]^{\top}$ where only the first x_{i} entries are 1 . Analogously, $\phi_{i}(z)=[1, \ldots, 1,0, \ldots, 0]^{\top}$ where only the first z_{i} entries are 1 . Then

$$
\left\langle\phi_{i}(x), \phi_{i}(z)\right\rangle=\sum_{i=1}^{x_{i}} 1 \cdot 1+\sum_{i=x_{i}+1}^{z_{i}} 0 \cdot 1+\sum_{i=z_{i}+1}^{100} 0 \cdot 0=x_{i}=\min \left(x_{i}, z_{i}\right)
$$

Therefore $K_{i}(x, z)$ is a kernel corresponding to the feature map $\phi_{i}(x)=\left[f_{1}\left(x_{i}\right), f_{2}\left(x_{i}\right), \ldots, f_{100}\left(x_{i}\right)\right]^{\top}$, and $K(x, z)$ is a kernel corresponding to the feature map $\phi(x)$ which is a concatenation of the feature $\operatorname{maps} \phi_{1}(x), \phi_{2}(x), \ldots, \phi_{d}(x)$.
5. $K(x, z)$ is a kernel.

Let $K_{i}(x, z)=1+x_{i} z_{i}$, then $K(x, z)=\prod_{i=0}^{d} K_{i}(x)$. From Problem 1, we know that the product of two kernels is also a kernel. Since $K_{i}(x, z)$ is a kernel corresponding to the feature map $\phi_{i}(x)=\left[1, x_{i}\right]^{\top}$, $K(x, z)$ is also a kernel. More specifically, $K(x, z)$ is a kernel corresponding to the feature map $\phi(x)$, where for any $x, \phi(x)$ has 2^{d} coordinates, one corresponding to each subset S of $\{1,2, \ldots, d\}$. $\phi_{S}(x)$, the coordinate of $\phi(x)$ corresponding to the set S is $\prod_{i \in S} x_{i}$. This kernel is called the All Subsets kernel.
6. $K(x, z)$ is not a kernel.

One way to prove this is by showing a violation of the PSD property. Let $x=[0, \ldots, 0], z=[1,0, \ldots, 0]$ and $v=[1,-1]^{\top}$. Then the kernel matrix

$$
K=\left[\begin{array}{ll}
K(x, x) & K(x, z) \\
K(z, x) & K(z, z)
\end{array}\right]=\left[\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right]
$$

Thus, $v^{\top} A v=-1<0$, which violates positivity.
Another nice way is through a violation of the Cauchy-Schwartz inequality. Consider $x=[0, \ldots, 0]$ and $z=[1,0, \ldots, 0]$. Then $K(x, x)=0, K(x, z)=K(z, z)=1$, which violates Cauchy-Schwarz inequality - that is $K(x, z)^{2} \geq K(x, x) \cdot K(z, z)$.
7. K is a kernel. The feature map ϕ has a coordinate for each word u in the dictionary D. Given a document x, the coordinate of $\phi(x)$ corresponding to word $u, \phi_{u}(x)$, is 1 if x contains the word u and 0 otherwise. Notice that this kernel is very similar to the string kernel we discussed in class.

